
13.13 1) L’angle entre les faces ABC et ABD est égal à l’angle entre les vecteurs −→n1

et −→n2, où le vecteur −→n1 est un vecteur perpendiculaire au plan ABC et où
le vecteur −→n2 est un vecteur perpendiculaire au plan ABD.

(a) Détermination d’un vecteur −→n1 perpendiculaire au plan ABC :
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 est perpendiculaire au plan ABC.

(b) Détermination d’un vecteur −→n2 perpendiculaire au plan ABD :
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 est perpendiculaire au plan ABD.

(c) Calcul de l’angle ϕ entre les vecteurs −→n1 et −→n2 :
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La formule ‖−→n1 × −→n2‖ = ‖−→n1‖ ‖−→n2‖ sin(ϕ) implique
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On conclut que ϕ = arcsin
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= 45̊ .
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2) Si −→n1 désigne toujours un vecteur perpendiculaire au plan ABC et si l’on

appelle ϑ l’angle aigu entre les vecteurs −→n1 et
−−−−→

AD, alors l’angle aigu que
forme l’arête AD avec la face ABC vaut 90̊ − ϑ.
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L’égalité ‖ ~n1 ×
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On en déduit que ϑ = arcsin
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≈ 47,12̊ .

Finalement, l’angle aigu que forme l’arête AD avec la face ABC vaut
90̊ − ϑ ≈ 90̊ − 47,12̊ = 42,88̊ .
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