
3 Chemins & Arbres

Chemins

Chaînes

Dans un graphe G, une chaîne allant de a à b est une liste ordonnée
x0 x1 . . . xn−1 xn de n + 1 sommets de G où a = x0, b = xn et où chaque
paire xi−1 xi (1 6 i 6 n) est une arête de G.

Le nombre n des arêtes qui composent la chaîne est sa longueur.

Remarque On ne demande pas que dans une chaîne tous les sommets ou
toutes les arêtes soient différents.

u

v w

yz

x

Dans le graphe ci-dessus, u v w x y w v z z y est une chaîne de longueur 9 qui va
du sommet u au sommet y. L’arête v w est incluse deux fois, de même que les
sommets v, w, y et z.

Si a = b, on parle d’une chaîne fermée, sinon d’une chaîne ouverte.

Chemins

Un chemin est une chaîne telle que chaque arête de celle-ci soit parcourue une
seule fois.

Un chemin simple est un chemin dont chaque sommet est traversé une seule
fois (excepté peut-être le premier et le dernier).

3.1 Considérons le graphe suivant :
u

v

x

y

z

a b
c

de

f

Les chaînes a e f a d et a b c d e sont-elles des chemins ? des chemins simples ?
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Remarque Comme l’illustre l’exercice 3.1, un chemin peut passer plusieurs
fois par le même sommet.

Il est facile de montrer que tout chemin allant d’un sommet à un autre peut
être « simplifié » en un chemin simple. Pour cela, il suffit de supprimer les
détours.

Connexité

Un graphe est connexe si toute paire de sommets peut être reliée par un
chemin.

3.2 Les graphes suivants sont-ils connexes ?

1) 2)

Si un graphe G n’est pas connexe, il se décompose en réunion de sous-graphes
connexes, appelés composantes connexes de G.

Le second graphe de l’exercice 3.2 admet, par exemple, deux composantes
connexes.

Théorème Tout graphe connexe à n sommets possède au moins n−1 arêtes.

Démontrons le résultat par récurrence sur le nombre de sommets n.

Pour n = 1 ou n = 2, le résultat est évident.

Supposons à présent n > 3 et le résultat vrai pour les graphes d’ordre 6 n−1.

Soit G = (V ;E) un graphe connexe d’ordre n. Distinguons deux cas.

1) Supposons qu’il existe un sommet de degré 1.
Soit G′ le sous-graphe de G obtenu par suppression d’un sommet de
degré 1 et de l’arête adjacente à ce sommet. Alors G′ est un graphe
connexe avec n − 1 sommets. Vu l’hypothèse de récurrence, il possède
au moins (n − 1) − 1 arêtes. Il en résulte que G, qui possède une arête
supplémentaire, a au moins n − 1 arêtes.

2) Supposons qu’il n’existe pas de sommet de degré 1.
Vu la connexité de G, il ne peut pas y avoir de sommet isolé, de sorte
que tous les sommets sont de degré > 2.
Le lemme des poignées de mains implique 2 |E| =

∑

x∈V

deg(x) > 2 n, d’où

l’on conclut que le nombre d’arêtes |E| > n > n − 1.
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Cycles

Un cycle est un chemin simple fermé.

Un graphe ne contenant pas de cycle est acyclique.

3.3 Déterminer les cycles de longueur 1, 2 et 3 dans le graphe suivant :
e2

e3

e4 e5

e1

Proposition Si dans un graphe G tout sommet est de degré > 2, alors G

possède au moins un cycle.

Preuve La preuve utilise un algorithme de marquage. Initialement, tous les
sommets sont non marqués. Un sommet x1 est arbitrairement marqué.

L’algorithme construit une séquence x1, x2, . . . , xk de sommets marqués en
choisissant arbitrairement pour xi+1 un sommet non marqué adjacent à xi.

L’algorithme s’arrête lorsque xk ne possède plus de voisin non marqué. Puisque
ce sommet est degré > 2, il possède, outre xk−1, un autre voisin marqué xj .

Alors xkxjxj+1 . . . xk−1xk est un cycle.

Corollaire Un graphe acyclique possède au moins un sommet de degré 6 1.

Théorème Tout graphe acyclique à n sommets possède au plus n−1 arêtes.

Preuve Démontrons le résultat par récurrence sur le nombre de sommets n.

Pour n = 1 ou n = 2, le résultat est évident.

Supposons à présent n > 3 et le résultat vrai pour les graphes d’ordre 6 n−1.

Soit G = (V ;E) un graphe acyclique d’ordre n. D’après le corollaire, il existe
un sommet x de degré 6 1. Soit G′ le sous-graphe de G obtenu par suppression
du sommet x et de l’éventuelle arête adjacente à ce sommet. Alors G′ est un
graphe acyclique avec n − 1 sommets. Vu l’hypothèse de récurrence, il possède
au plus (n − 1) − 1 arêtes. Il en résulte que G, qui possède une éventuelle arête
supplémentaire, a au plus n − 1 arêtes.

Arbres

Un arbre est un graphe connexe acyclique.
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3.4 Quel est le nombre d’arêtes d’un arbre à n sommets ?

Remarque Un arbre est nécessairement simple, puisqu’il est acyclique.

Exemple Les trois graphes suivants sont des arbres :
1) 2) 3)

La réunion ensembliste des graphes 1), 2) et 3) est un graphe qui, bien que
n’admettant pas de cycles, n’est pas un arbre, car il n’est pas connexe. On
l’appelle une forêt.

Remarque Un sous-graphe d’un arbre peut être une forêt ; un sous-graphe
connexe d’un arbre T est un sous-arbre de T.

Propriétés & caractérisations des arbres

La connexité d’un graphe implique que deux sommets quelconques sont tou-
jours reliés par au moins un chemin.

Le fait qu’il n’y ait qu’un seul chemin entre deux sommets distincts quel-
conques caractérise les arbres, comme l’énonce le théorème suivant.

Théorème Un graphe simple est un arbre si et seulement si deux sommets
distincts quelconques peuvent être reliés par un chemin unique.

Preuve

1) Soit T un arbre. Supposons — par l’absurde — qu’il existe deux som-
mets distincts u et v qui puissent être reliés par deux chemins distincts.

u

v

Leur réunion va contenir un cycle (et probablement d’autres arêtes), ce
qui est en contradiction avec le fait que T est acyclique.

2) Réciproquement, supposons que deux sommets distincts quelconques
d’un graphe G soient toujours reliés par un chemin unique. Alors G ne
peut pas contenir de cycle, car deux sommets distincts d’un cycle sont
toujours reliés par deux chemins distincts. Donc G est un arbre.
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Théorème Soit G un graphe à n sommets. Alors les propriétés suivantes
sont équivalentes et peuvent être prises comme la définition d’un arbre.

1) G est connexe et acyclique.

2) G est un graphe connexe à n − 1 arêtes.

3) G est connexe et la suppression de toute arête le déconnecte.

4) G est un graphe acyclique à n − 1 arêtes.

5) G est acyclique et l’ajout de toute arête le rend cyclique.

Preuve

1) ⇒ 2) G étant connexe et acyclique, il possède exactement n − 1 arêtes.
2) ⇒ 3) Pour être connexe, un graphe à n sommets doit posséder au moins

n−1 arêtes. En supprimant une arête de G, il n’en reste plus que n−2.
3) ⇒ 4) Si, par l’absurde, G possédait un cycle, la suppression d’une arête

ne saurait le déconnecter ; par suite, G est acyclique. Puisqu’il est éga-
lement connexe, il possède donc exactement n − 1 arêtes.

4) ⇒ 5) Pour être acyclique, un graphe à n sommets doit posséder au plus
n − 1 arêtes. L’ajout d’une arête à G donne un graphe à n arêtes.

5) ⇒ 1) Considérons deux sommets x et y de G.
— Si l’arête x y existe, alors c’est un chemin de x à y.
— Sinon, ajoutons l’arête x y à G : nous créons alors un cycle de la

forme x a . . . w y x. Ceci montre l’existence du chemin x a . . . w y

entre x et y dans G.
G est donc bien un graphe connexe.

3.5 Montrer que les conditions suivantes sont équivalentes :
1) G est connexe et a un seul cycle.
2) G est connexe et le nombre de sommets est égal au nombre d’arêtes.
3) Il existe une arête e de G telle que G − e est un arbre.

3.6 Prouver qu’un graphe de n sommets et n − 1 arêtes qui a au moins un cycle a
plus d’une composante connexe.

Connexion minimale

Arbres de recouvrement d’un graphe

On appelle arbre de recouvrement d’un graphe G un sous-graphe de G qui
contient tous les sommets de G et qui est un arbre.

En général, comme on le voit ci-dessous, un graphe peut avoir plusieurs arbres
de recouvrement.

v w

xyz

v w

xyz

v w

xyz

v w

xyz

Théorie des graphes : chemins & arbres 3.5



Remarque Si le graphe n’est pas connexe, il n’existe pas d’arbre de recou-
vrement, puisqu’un arbre est connexe.

Théorème Tout graphe connexe contient un arbre de recouvrement.

Preuve Soit G un graphe connexe.

Considérons l’ensemble Ψ de tous les sous-graphes connexes de G contenant
tous les sommets de G. L’ensemble Ψ est non vide, vu que G ∈ Ψ.

Soit T l’un des éléments de Ψ possédant un nombre minimum d’arêtes.

T est acyclique : sinon, T contiendrait un cycle et la suppression d’une arête
quelconque de ce cycle donnerait un sous-graphe appartenant à Ψ ayant une
arête de moins que T, ce qui contredirait le choix de T.

Vu que T est connexe et acyclique, il constitue un arbre de recouvrement de G.

3.7 Trouver un arbre de recouvrement du graphe suivant :

v1 v2

v3

v4

v5 v6

3.8 Trouver un arbre de recouvrement du graphe suivant :

v10

v1 v2 v3

v4

v5v6v7

v8 v9

3.9 Dessiner les 8 arbres de recouvrement du graphe :
a b

cd
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Le problème de la connexion minimale

Supposons que différents objets (villes, centres de distribution, prises de cou-
rant électrique, etc.) doivent être reliés entre eux de manière minimum (cela
peut être en distance, en temps, en coût ou selon d’autres critères), de sorte
qu’il existe toujours un « chemin » possible entre deux quelconques de ces
objets.

Il est facile de traduire cette situation par un graphe G :
— L’ensemble des sommets de G est l’ensemble des objets. Une arête de G

correspond à une liaison directe possible entre deux sommets.
— À chaque arête on fait correspondre un nombre positif, appelé poids,

qui peut représenter une distance, un temps, un coût, etc.
Nous obtenons ainsi ce que l’on appelle un graphe pondéré.

Le problème consiste alors à trouver un arbre de recouvrement de G de poids
minimum.

Exemple Six ordinateurs C1,C2, . . . ,C6 doivent être reliés par un réseau de
transmission à fibre optique. Le coût (unité = 10 000 fr.) de chaque liaison
possible est donné par le tableau suivant :

C1 C2 C3 C4 C5 C6

C1 — 10 14 18 13 8
C2 10 — 3 16 5 12
C3 14 3 — 7 17 11
C4 18 16 7 — 9 4
C5 13 5 17 9 — 6
C6 8 12 11 4 6 —

Il faut trouver le réseau le moins cher possible tel que toute paire d’ordinateurs
puisse communiquer, que ce soit directement ou à travers d’autres ordinateurs.

Le graphe pondéré par les coûts est le suivant :

C1

C2

C3

C4

C5

C6

10

14

1
8

13

8

3

165

12

7

17

11

9

4

6
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Algorithme de Kruskal

Cet algorithme est dû au mathématicien tchèque Joseph B. Kruskal qui l’a
utilisé le premier en 1956.

Soit G = (V ;E) un graphe connexe et pondéré.

1) Trier les arêtes de E par ordre croissant de poids : e1, . . . , e|E|.

2) Poser F = ∅.

3) Pour tout i allant de 1 à n, ajouter l’arête ei à F, pour autant que le
graphe (V ;F) qui en résulte demeure acyclique.

Par construction et en vertu de la propriété 5) du théorème de la page 3.4, on
obtient ainsi un arbre de recouvrement de poids minimum.

Exemple (suite) Appliquons l’algorithme de Kruskal aux six ordinateurs
reliés par un réseau de transmission à fibre optique.

Ordonnons les arêtes du graphe par ordre croissant de poids :
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18.

L’application de l’algorithme donne F = {3 ; 4 ; 5 ; 6 ; 8}.

C1

C2

C3

C4

C5

C6

10

14

1
8

13

8

3

165

12

7

17

11

9

4

6

En effet, l’ajout de l’arête de poids 7 créerait le cycle C2 C3 C4 C6 C5 C2. À
partir de l’ajout de l’arête de poids 8, tous les sommets sont reliés, c’est-à-dire
que le graphe est connexe, de sorte qu’il constitue un arbre et que l’ajout de
toute arête supplémentaire crée un cycle.

Le poids de l’arbre est 3 + 4 + 5 + 6 + 8 = 26 : le réseau cherché peut être
construit, selon l’arbre trouvé, au prix de 260 000 fr.

Algorithme de Prim

Bien que l’algorithme de Kruskal puisse être facilement appliqué « à la main »
quand le graphe est petit, il n’est pas particulièrement approprié à une implé-
mentation efficace dans un ordinateur. En effet, il faut arranger les arêtes dans
l’ordre de poids croissant et surtout contrôler qu’aucun cycle n’a été créé.
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L’algorithme de Prim, que l’on doit à l’informaticien Robert C. Prim en 1957,
permet de surmonter ces difficultés.

Soit G = (V ;E) un graphe connexe et pondéré.

1) Marquer arbitrairement un sommet.

2) Poser F = ∅.

3) Tant qu’il existe un sommet non marqué, choisir une arête de poids mi-
nimum joignant un sommet marqué à un sommet non marqué ; ajouter
cette arête à F et marquer ce nouveau sommet.

Par construction et en vertu de la propriété 3) du théorème de la page 3.4, on
obtient ainsi un arbre de recouvrement de poids minimum.

Exemple (fin) Appliquons l’algorithme de Prim aux six ordinateurs reliés
par un réseau de transmission à fibre optique, en marquant initialement le
sommet C1 :

C1

C2

C3

C4

C5

C6

10

1
4

1
8

1
3

8

3

1
6

5

12

7

17

11

9

4

6

C1

C2

C3

C4

C5

C6

10

1
4

1
8

1
3

8

3

1
6

5

12

7

17

11

9

4

6

C1

C2

C3

C4

C5

C6

10

1
4

1
8

1
3

8

3

1
6

5

12

7

17

11

9

4

6

C1

C2

C3

C4

C5

C6

10

1
4

1
8

1
3

8

3

1
6

5

12

7

17

11

9

4

6

C1

C2

C3

C4

C5

C6

10

1
4

1
8

1
3

8

3

1
6

5

12

7

17

11

9

4

6

C1

C2

C3

C4

C5

C6

10

1
4

1
8

1
3

8

3

1
6

5

12

7

17

11

9

4

6

3.10 Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de recou-
vrement minimum pour le graphe pondéré suivant :

v7

v1
v2 v3

v4v5v6

8

9

1

2

11
10

3

4

7

5

6
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3.11 Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de recou-
vrement minimum pour le graphe pondéré suivant :

v8 v9

v1 v2

v3

v4v5

v6

v7

1

12
11

15
10

2

4

13

86 3

7
14 9

5

3.12 Le tableau suivant donne les distances (en centaines de milles) entre six villes
européennes.

Berlin Londres Madrid Moscou Paris Rome
Berlin 0 7 15 11 7 10

Londres 7 0 11 18 3 12
Madrid 15 11 0 27 8 13
Moscou 11 18 27 0 18 20
Paris 7 3 8 18 0 9
Rome 10 12 13 20 9 0

Trouver un arbre de recouvrement minimum reliant chacune de ces villes :

1) par l’algorithme de Kruskal ;

2) par l’algorithme de Prim.

3.13 Déterminer tous les graphes de recouvrement minimaux du graphe suivant :

4

5
5

1

2

3

4

2
3

2

4
1
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Réponses

3.1 a e f a d n’est pas un chemin allant de v à z.
a b c d e est un chemin allant de v à u qui n’est pas simple.

3.2 1) oui 2) non

3.3 e1 est le seul cycle de longueur 1.
e2e3 est le seul cycle de longueur 2.
e2e4e5 et e3e4e5 sont les seuls cycles de longueur 3.
Remarquons que e3e2e1 n’est pas un cycle puisqu’un sommet est répété.

3.4 n − 1

3.7 v1 v2

v3

v4

v5 v6

3.8

v10

v1 v2 v3

v4

v5v6v7

v8 v9

3.9 a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

a b

cd

3.10

v7

v1
v2 v3

v4v5v6

8

9

1

2

4

5
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3.11

v8 v9

v1 v2

v3

v4v5

v6

v7

1

10

2

4

6 3

7
5

3.12

Londres

Paris

Berlin

Rome
Madrid

Moscou

3

8
9

7

11
Londres

Paris

Berlin

Rome
Madrid

Moscou

3

8
9

7

11

3.13

4

1

2

3

2

2

1

4

1

2

2
3

2

1
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