3.1

Chemins & Arbres

Chemins

Chaines

Dans un graphe G, une chaine allant de a a b est une liste ordonnée
Toxy ... Tp_1T, de n + 1 sommets de G ou a = x9, b = x, et ou chaque
paire ;1 x; (1 <i < n) est une aréte de G.

Le nombre n des arétes qui composent la chaine est sa longueur.

Remarque On ne demande pas que dans une chaine tous les sommets ou
toutes les arétes soient différents.

(Y w

z )

Dans le graphe ci-dessus, uvw xyw v z zy est une chaine de longueur 9 qui va
du sommet v au sommet y. L’aréte v w est incluse deux fois, de méme que les
sommets v, w, y et z.

Si a = b, on parle d'une chaine fermée, sinon d'une chaine ouverte.

Chemins

Un chemin est une chaine telle que chaque aréte de celle-ci soit parcourue une
seule fois.

Un chemin simple est un chemin dont chaque sommet est traversé une seule
fois (excepté peut-étre le premier et le dernier).

Considérons le graphe suivant :
u e x d z

v )
Les chaines ae fad et abcde sont-elles des chemins ? des chemins simples ?
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3.2

Remarque Comme l'illustre I'exercice 3.1, un chemin peut passer plusieurs
fois par le méme sommet.

Il est facile de montrer que tout chemin allant d’'un sommet a un autre peut
étre « simplifié » en un chemin simple. Pour cela, il suffit de supprimer les
détours.

Connexité

Un graphe est connexe si toute paire de sommets peut étre reliée par un
chemin.

Les graphes suivants sont-ils connexes ?
1) o 2) o

Si un graphe G n’est pas connexe, il se décompose en réunion de sous-graphes
connexes, appelés composantes connexes de G.

Le second graphe de l'exercice 3.2 admet, par exemple, deux composantes
connexes.

Théoreme Tout graphe connexe a n sommets posséde au moins n— 1 arétes.
Démontrons le résultat par récurrence sur le nombre de sommets n.

Pour n =1 ou n = 2, le résultat est évident.

Supposons a présent n > 3 et le résultat vrai pour les graphes d’ordre < n — 1.
Soit G = (V; E) un graphe connexe d’ordre n. Distinguons deux cas.

1) Supposons qu’il existe un sommet de degré 1.

Soit G’ le sous-graphe de G obtenu par suppression d’un sommet de
degré 1 et de l'aréte adjacente a ce sommet. Alors G’ est un graphe
connexe avec n — 1 sommets. Vu I’hypothese de récurrence, il possede
au moins (n — 1) — 1 arétes. Il en résulte que G, qui possede une aréte
supplémentaire, a au moins n — 1 arétes.

2) Supposons qu'’il n’existe pas de sommet de degré 1.

Vu la connexité de G, il ne peut pas y avoir de sommet isolé, de sorte

que tous les sommets sont de degré > 2.

Le lemme des poignées de mains implique 2 |E| = Z deg(z) > 2n, d’ou
eV

'on conclut que le nombre d’arétes |E| >n >n — 1.
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3.3

Cycles

Un cycle est un chemin simple fermé.

Un graphe ne contenant pas de cycle est acyclique.

Déterminer les cycles de longueur 1, 2 et 3 dans le graphe suivant :

€2

a(F =

€4 €5

Proposition Si dans un graphe G tout sommet est de degré > 2, alors G
posséde au moins un cycle.

Preuve La preuve utilise un algorithme de marquage. Initialement, tous les
sommets sont non marqués. Un sommet x; est arbitrairement marqué.

L’algorithme construit une séquence xi,xs,...,x; de sommets marqués en
choisissant arbitrairement pour x;,; un sommet non marqué adjacent a x;.

L’algorithme s’arréte lorsque x ne possede plus de voisin non marqué. Puisque
ce sommet est degré > 2, il possede, outre z;_;, un autre voisin marqué ;.

Alors xyz;xj41 ... xp_121 est un cycle.
Corollaire Un graphe acyclique possede au moins un sommet de degré < 1.
Théoréme Tout graphe acyclique a n sommets posséde au plus n— 1 arétes.

Preuve Démontrons le résultat par récurrence sur le nombre de sommets n.
Pour n =1 ou n = 2, le résultat est évident.
Supposons a présent n > 3 et le résultat vrai pour les graphes d’ordre < n — 1.

Soit G = (V; E) un graphe acyclique d’ordre n. D’apres le corollaire, il existe
un sommet = de degré < 1. Soit G’ le sous-graphe de G obtenu par suppression
du sommet z et de I’éventuelle aréte adjacente a ce sommet. Alors G’ est un
graphe acyclique avec n — 1 sommets. Vu I’hypothese de récurrence, il possede
au plus (n — 1) — 1 arétes. Il en résulte que G, qui possede une éventuelle aréte
supplémentaire, a au plus n — 1 arétes.

Arbres

Un arbre est un graphe connexe acyclique.
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3.4

Quel est le nombre d’arétes d'un arbre a n sommets ?

Remarque Un arbre est nécessairement simple, puisqu’il est acyclique.

Exemple Les trois graphes suivants sont des arbres :

1) 2) 3)

La réunion ensembliste des graphes 1), 2) et 3) est un graphe qui, bien que
n’admettant pas de cycles, n’est pas un arbre, car il n’est pas connexe. On
I’appelle une forét.

Remarque Un sous-graphe d'un arbre peut étre une forét; un sous-graphe
connexe d'un arbre T est un sous-arbre de T.

Propriétés & caractérisations des arbres

La connexité d'un graphe implique que deux sommets quelconques sont tou-
jours reliés par au moins un chemin.

Le fait qu’il n’y ait qu'un seul chemin entre deux sommets distincts quel-
conques caractérise les arbres, comme 1’énonce le théoreme suivant.

Théoréme Un graphe simple est un arbre si et seulement si deux sommets
distincts quelconques peuvent étre reliés par un chemin unique.

Preuve

1) Soit T un arbre. Supposons — par "absurde — qu’il existe deux som-
mets distincts u et v qui puissent étre reliés par deux chemins distincts.

Leur réunion va contenir un cycle (et probablement d’autres arétes), ce
qui est en contradiction avec le fait que T est acyclique.

2) Réciproquement, supposons que deux sommets distincts quelconques
d’un graphe G soient toujours reliés par un chemin unique. Alors G ne
peut pas contenir de cycle, car deux sommets distincts d'un cycle sont
toujours reliés par deux chemins distincts. Donc G est un arbre.
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Théoréme Soit G un graphe a n sommets. Alors les propriétés suivantes
sont équivalentes et peuvent étre prises comme la définition d’un arbre.

1) G est connexe et acyclique.

2) G est un graphe connexe a n — 1 arétes.

3) G est connexe et la suppression de toute aréte le déconnecte.
4) G est un graphe acyclique a n — 1 arétes.

5) G est acyclique et l'ajout de toute aréte le rend cyclique.

Preuve
1) = 2) G étant connexe et acyclique, il possede exactement n — 1 arétes.

2) = 3) Pour étre connexe, un graphe a n sommets doit posséder au moins
n —1 arétes. En supprimant une aréte de G, il n’en reste plus que n — 2.

3) = 4) Si, par I'absurde, G possédait un cycle, la suppression d’une aréte
ne saurait le déconnecter ; par suite, G est acyclique. Puisqu’il est éga-
lement connexe, il possede donc exactement n — 1 arétes.

4) = 5) Pour étre acyclique, un graphe a n sommets doit posséder au plus
n — 1 arétes. L’ajout d'une aréte a G donne un graphe a n arétes.

5) = 1) Considérons deux sommets z et y de G.
— Si l'aréte x y existe, alors c¢’est un chemin de z a y.
— Sinon, ajoutons 'aréte xy a G : nous créons alors un cycle de la
forme za ... wyx. Ceci montre l'existence du chemin xa ... wy
entre = et y dans G.
G est donc bien un graphe connexe.

3.5 Montrer que les conditions suivantes sont équivalentes :
1) G est connexe et a un seul cycle.
2) G est connexe et le nombre de sommets est égal au nombre d’arétes.

3) Il existe une aréte e de G telle que G — e est un arbre.

3.6 Prouver qu'un graphe de n sommets et n — 1 arétes qui a au moins un cycle a
plus d'une composante connexe.
Connexion minimale
Arbres de recouvrement d’un graphe

On appelle arbre de recouvrement d’'un graphe G un sous-graphe de G qui
contient tous les sommets de G et qui est un arbre.

En général, comme on le voit ci-dessous, un graphe peut avoir plusieurs arbres
de recouvrement.

v w v w v w v w
A Yy x z Yy x z Yy x Z Yy x
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Remarque Si le graphe n’est pas connexe, il n’existe pas d’arbre de recou-
vrement, puisqu’un arbre est connexe.

Théoreme Tout graphe connexe contient un arbre de recouvrement.

Preuve Soit G un graphe connexe.

Considérons ’ensemble ¥ de tous les sous-graphes connexes de G contenant
tous les sommets de G. L’ensemble ¥ est non vide, vu que G € V.

Soit T 1'un des éléments de ¥ possédant un nombre minimum d’arétes.

T est acyclique : sinon, T contiendrait un cycle et la suppression d’une aréte
quelconque de ce cycle donnerait un sous-graphe appartenant a ¥ ayant une
aréte de moins que T, ce qui contredirait le choix de T.

Vu que T est connexe et acyclique, il constitue un arbre de recouvrement de G.

3.7 Trouver un arbre de recouvrement du graphe suivant :
U1 U2
U3
Uy
Us Vg
3.8 Trouver un arbre de recouvrement du graphe suivant :
U1 U2 U3

Vg Uy

U7 Ve Us
3.9 Dessiner les 8 arbres de recouvrement du graphe :
a b
d c
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Le probléme de la connexion minimale

Supposons que différents objets (villes, centres de distribution, prises de cou-
rant électrique, etc.) doivent étre reliés entre eux de maniére minimum (cela
peut étre en distance, en temps, en coiit ou selon d’autres critéres), de sorte
qu’il existe toujours un « chemin » possible entre deux quelconques de ces
objets.

Il est facile de traduire cette situation par un graphe G :
— L’ensemble des sommets de G est I’ensemble des objets. Une aréte de G
correspond a une liaison directe possible entre deux sommets.
— A chaque aréte on fait correspondre un nombre positif, appelé poids,
qui peut représenter une distance, un temps, un cotit, etc.
Nous obtenons ainsi ce que 'on appelle un graphe pondéré.

Le probleme consiste alors a trouver un arbre de recouvrement de G de poids
minimum.

Exemple Six ordinateurs Cy, Cs, ..., Cg doivent étre reliés par un réseau de
transmission a fibre optique. Le cott (unité = 10 000 fr.) de chaque liaison
possible est donné par le tableau suivant :

| [[C G C C G5 G

C,[— 10 14 18 13 8
Co |10 — 3 16 5 12
Csll14 3 — 7 17 11
C,ll18 16 7 — 9 4
Cs |13 5 17 9 — 6
Cell 8 12 11 4 6

I1 faut trouver le réseau le moins cher possible tel que toute paire d’ordinateurs
puisse communiquer, que ce soit directement ou a travers d’autres ordinateurs.

Le graphe pondéré par les cotits est le suivant :

Cy
% 0
Cs Co
12
2 % &
(@) © w
\g 9 N
7
17
C5 Cg
9 1
Cy
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Algorithme de Kruskal

Cet algorithme est dii au mathématicien tcheque Joseph B. Kruskal qui I'a
utilisé le premier en 1956.

Soit G = (V; E) un graphe connexe et pondéré.
1) Trier les arétes de E par ordre croissant de poids : ey,. .., e

2) Poser F = @.

3) Pour tout ¢ allant de 1 & n, ajouter 'aréte e; a F, pour autant que le
graphe (V;F) qui en résulte demeure acyclique.

Par construction et en vertu de la propriété 5) du théoreme de la page 3.4, on
obtient ainsi un arbre de recouvrement de poids minimum.

Exemple (suite) Appliquons l'algorithme de Kruskal aux six ordinateurs
reliés par un réseau de transmission a fibre optique.

Ordonnons les arétes du graphe par ordre croissant de poids :
3,4,5,6,7,8,9,10,11,12,13,14,16, 17, 18.
L’application de I'algorithme donne F = {3;4;5;6;8}.

N

En effet, 'ajout de l'aréte de poids 7 créerait le cycle Cy C3Cy4CgCs Cy. A
partir de I'ajout de I'aréte de poids 8, tous les sommets sont reliés, c’est-a-dire
que le graphe est connexe, de sorte qu’il constitue un arbre et que I'ajout de
toute aréte supplémentaire crée un cycle.

Le poids de l'arbre est 3 +4 + 5+ 6 + 8 = 26 : le réseau cherché peut étre
construit, selon I’arbre trouvé, au prix de 260 000 fr.

Algorithme de Prim

Bien que I'algorithme de Kruskal puisse étre facilement appliqué « a la main »
quand le graphe est petit, il n’est pas particulierement approprié a une implé-
mentation efficace dans un ordinateur. En effet, il faut arranger les arétes dans
I'ordre de poids croissant et surtout controler qu’aucun cycle n’a été créé.
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L’algorithme de Prim, que 1'on doit a l'informaticien Robert C. Prim en 1957,
permet de surmonter ces difficultés.

Soit G = (V; E) un graphe connexe et pondéré.
1) Marquer arbitrairement un sommet.
2) Poser F = @.

3) Tant qu’il existe un sommet non marqué, choisir une aréte de poids mi-
nimum joignant un sommet marqué a un sommet non marqué ; ajouter
cette aréte a F et marquer ce nouveau sommet.

Par construction et en vertu de la propriété 3) du théoreme de la page 3.4, on
obtient ainsi un arbre de recouvrement de poids minimum.

Exemple (fin) Appliquons 'algorithme de Prim aux six ordinateurs reliés
par un réseau de transmission a fibre optique, en marquant initialement le
sommet Cjy :

3.10 Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de recou-
vrement minimum pour le graphe pondéré suivant :

vy 8 U2 1 U3

Vg [ 5 Vg
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3.11

3.12

3.13

Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de recou-

vrement minimum pour le graphe pondéré suivant :

Le tableau suivant donne les distances (en centaines de milles) entre six villes

européennes.
Berlin Londres Madrid Moscou Paris Rome
Berlin 0 11 7 10
Londres 7 18 3 12
Madrid 15 27 8 13
Moscou 11 0 18 20
Paris 7 18 0 9
Rome 10 20 9 0

Trouver un arbre de recouvrement minimum reliant chacune de ces villes :

1) par l'algorithme de Kruskal;
2) par lalgorithme de Prim.

Déterminer tous les graphes de recouvrement minimaux du graphe suivant :

2

. 4

[

5 2
1
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Réponses

3.1 ae fadn’est pas un chemin allant de v a z.
abcde est un chemin allant de v a u qui n’est pas simple.

3.2 1) oui 2) non

3.3 e1 est le seul cycle de longueur 1.
eses est le seul cycle de longueur 2.
eseqes et egeqes sont les seuls cycles de longueur 3.

Remarquons que egese; n’est pas un cycle puisqu’un sommet est répété.

3.4 n—1

3.7 (4] VU
U3
V4
Us Vg
3.8 U1 (%) U3
Ug (%) V10 V4
U7 Ve Us
3.9 a b a, ob a b R
d c d* *c d c da° e
a b a b a b a b
d c d c d c d c
3.10 Uy 8 (%) 1 'US
2
9 Uy 4
o———O
(% Us 5 Uy
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3.11

3.12
Londres 7 Berlin
Madrid
Rome
3.13 5
7
1 2
®
1 3
1 7

Moscou Moscou

Londres

Madrid

Rome
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