6.1

6.2

Coloriage de graphes

Sans les problemes de coloriage, la théorie des graphes ne serait pas ce qu’elle
est aujourd’hui. La raison en est le célebre probleme des quatre couleurs, déja
mentionné dans l'introduction, qui a stimulé la recherche dans ce domaine au
cours du XX¢ siecle.

Dans un graphe, on peut envisager la question du coloriage de deux manieres :

colorier les sommets ou les arétes. On se bornera ici aux résultats de base sur
le coloriage des sommets.

Coloriage des sommets

On appelle coloriage des sommets d'un graphe G = (V;E) l'opération
qui consiste a affecter une couleur a chaque sommet de telle sorte que deux
sommets voisins ne portent jamais la méme couleur.

Si le coloriage utilise k couleurs, on dit que G est k-coloriable.

Le nombre chromatique de G, noté x(G), est le plus petit nombre de cou-
leurs permettant de colorier le graphe G.

Remarques

— Les définitions précédentes ne sont données que pour des graphes simples.
Les boucles doivent étre exclues, car dans tout k-coloriage les sommets
aux extrémités de toutes les arétes doivent avoir des couleurs différentes.
Dans ce cas, un sommet qui comporterait une boucle devrait avoir deux
couleurs.
On exclut aussi les arétes multiples entre deux sommets, car celles-ci ne
changent rien a la nature du coloriage.

— Pour des raisons de commodité, on décrit les couleurs par des nombres
1,2,... que l'on écrit a coté des sommets concernés.

Exemples Les graphes 1) et 2) illustrent un coloriage de G avec respective-
ment 4 et 3 couleurs, alors que le graphe 3) n’est pas un coloriage de G.

1) 1 2) 3 3) 2

3 4 2 1 3 2

Le probléme le plus important est de calculer x(G).

Trouver le nombre chromatique de Ks, K3, Ky, K5 et K,,.

Trouver le nombre chromatique du graphe cyclique C,,.

Indication : distinguer les cas n pair et n impair.
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6.3

6.4

6.5

Trouver le nombre chromatique dun arbre.

En général, pour montrer que le nombre chromatique d’un graphe G donné
vaut k, il faut vérifier deux choses :

1) trouver un coloriage qui utilise k& couleurs ;
2) montrer qu’il n’y a aucun coloriage possible avec moins de k couleurs.

Pour cela, on peut s’aider de la propriété suivante :
si H est un sous-graphe de G, alors x(H) < x(G).

On peut encore remarquer que si G a n sommets, alors x(G) < n.
Exemple 4

Déterminons le nombre chromatique du
graphe G ci-contre.

On commence par construire un coloriage avec

4 couleurs; donc x(G) < 4.
Mais G ne peut pas étre colorié avec moins de )\
4 couleurs, car G contient le graphe complet Ky ; i\

Finalement x(G) = 4. 2 3

Déterminer le nombre chromatique du graphe suivant :

e

Déterminer le nombre Chromathue pour chacun des graphes suivants :

[
W w
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Applications

On peut modéliser la résolution d’un probleme de recherche opérationnelle par
un coloriage de graphe en groupant dans la méme classe des individus ou des
objets qui n’entrent pas en conflit.

Exemples

Un probléme de stockage Supposons qu’une entreprise ait a stocker des
produits chimiques. Certains d’entre eux peuvent réagir violemment (explo-
sion, dégagement toxique, etc...) s’ils entrent en contact. Pour cette raison,
de tels produits sont dits incompatibles. Pour les garder avec sécurité, il est
nécessaire de les conserver dans des zones séparées. Le plus simple serait d’at-
tribuer une zone de stockage par produit, mais on risque alors d’utiliser plus
de zones que nécessaires (sauf si tous les produits sont mutuellement incom-
patibles). Quel est le nombre minimum de zones requises pour conserver tous
ces produits de maniere sécurisée ?

Ce probleme de stockage se traduit en un probleme de coloriage d'un graphe.
Considérons le graphe G = (V;E) ou V représente I'ensemble des produits
chimiques et E I’ensemble d’arétes reliant deux produits incompatibles. Déter-
miner le nombre minimum de zones revient a déterminer x(G).

Un probléme d’horaire Une université doit organiser les horaires des exa-
mens. On suppose qu’il y a 7 épreuves a planifier correspondant aux cours
numérotés de 1 a 7. Il ne peut y avoir qu’une épreuve par jour. Les paires de
cours suivants ont des étudiants communs : 1 et 2, 1et 3, 1et 4, 1 et 7, 2 et 3,
2et4,2etH,2et7,3et4,3et6,3et7,4etb 4det6,5et6,5et7, 6et 7.
Comment organiser sur une durée minimale ces épreuves de fagon qu’aucun
étudiant n’ait a passer deux épreuves le méme jour ?

A cette fin, construisons le graphe G dont les sommets sont les épreuves nu-
mérotées de 1 a 7. Une aréte relie deux sommets lorsque les deux cours corres-
pondants possedent des étudiants communs :

Planifier les examens en un temps minimal consiste a déterminer une k-coloration
de G, avec k = x(G).

G possede un sous-graphe complet d’ordre 4 (de sommets 1,2, 3,4), donc 4 <
X(G). Déterminons une partition de G en sous-ensemble stables, & savoir en
sous-ensembles ne contenant que des sommets non voisins :

81:{1,6} 82:{2} 83:{3,5} 842{4,7}
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d’ou x(G) < 4 et finalement x(G) = 4.

Les examens peuvent étre répartis en 4 jours de la maniere suivante :
— 1°" jour : épreuves des cours 1 et 6;
— 2° jour : épreuves du cours 2;
— 3¢ jour : épreuves des cours 3 et 5;
— 4¢ jour : épreuves des cours 4 et 7.

6.6 Dans un congres, on cherche a planifier I’horaire d’une série de conférences
qui doivent étre toutes de méme durée. Dans le tableau ci-dessous, les étoiles
indiquent les interventions qui ne peuvent pas coincider. Comment procéder
pour que la durée totale des interventions soit minimale ?

a b ¢ d e f g
a | — x x Kx - - %
b|x — % % % — %
clx * - x - x -
d |« * * - - % -
e | - *x - - - - -
f |- - % % - - %
g |l x * - - = % -

6.7 Un gardien de zoo souhaite placer 8 animaux A, B, C, D, E, F, G et H dans des
enclos. Le tableau ci-dessous indique par des croix les animaux qui, pour des
raisons de sécurité, doivent étre placés dans des enclos différents. Déterminer
a ’aide d’un graphe convenable le nombre minimum d’enclos qui permet de
placer ces animaux de fagon judicieuse.

A B C D E F G H
A — X — — X X — X
B X — X — — X — X
C — X — X — X X X
D - - X - X X X —
E X - - X - X X —
F X X X X X — — —
G — — X X X - - X
H X X X — — — X —

Algorithme glouton

Il y a un algorithme naif pour décider si un graphe G de n sommets peut
étre colorié avec k couleurs. Il suffit de vérifier si I'un des k™ coloriages est
acceptable. En itérant cet algorithme pour un nombre croissant de k couleurs,
on obtient un algorithme pour calculer le nombre chromatique, mais le temps
pour l'effectuer croit exponentiellement avec le nombre des sommets.
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Trouver le nombre chromatique d’un graphe donné est un probleme difficile. On
ne connait actuellement aucun algorithme qui fonctionne en temps polynomial
et la plupart des spécialistes pensent qu’il n’en existe aucun.

Pourtant, il existe une méthode simple de coloriage : elle consiste a numéroter
les sommets du graphe et a colorier successivement chaque sommet avec la pre-
miere couleur qui n’a pas encore été attribuée a ses voisins. Malheureusement,
ce procédé ne fournit pas forcément un coloriage minimum.

On procede comme suit :
— On numérote arbitrairement les sommets de G, a savoir vy, va, ..., Uy,
de méme que les couleurs a disposition.
— On affecte la couleur 1 a vy.
— On considere ensuite le sommet suivant v, et on lui attribue la premiere
couleur non déja attribuée a ses voisins. Dans ce cas, c¢’est la couleur 1

ou 2.
— Plus généralement, soit le sommet v; tel que tous les sommets précédents
V1, Vg, ..., V;_1 soient déja coloriés. On attribue alors a v; la premiere

couleur non déja attribuée a ses voisins.
— On poursuit de méme jusqu’a colorier ainsi tous les sommets.

Exemple Voici l'effet de 'algorithme glouton sur le graphe G :

Vg Vg V10 3 4 2

L’application de Il’algorithme glouton
montre que le graphe G est 4-coloriable.

Pourtant son mnombre chromatique
X(G) = 3, comme le montre la figure
ci-contre.

Remarques
— L’efficacité de 'algorithme glouton dépend beaucoup de l'ordre initial
donné aux sommets. Il y a n! ordres possibles et, si 'on veut les essayer
tous, I'algorithme requiert un temps exceptionnel.
— 1l peut arriver que, dans la numérotation des sommets, I’on tombe pré-
cisément sur celle qui est associée a un coloriage minimum.
Malgré le gaspillage possible, cet algorithme est utilisé en théorie et en pratique.
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6.8 Utiliser I'algorithme glouton pour colorier les sommets du graphe suivant en

respectant dans chaque cas 1’ordre proposé.

1) Oq ,C 2) a 3) a
f "9 d h
Quelle est la valeur de x(G)?
6.9 Utiliser ’algorithme glouton pour colorier les graphes suivants :
2)
f

Théoréme SiG est un graphe simple tel que le degré maximum des sommets

soit d, alors x(G) < d+ 1.

Preuve Quelle que soit la numérotation des sommets, ['algorithme glouton
n’utilise jamais plus de d 4+ 1 couleurs, puisqu'un sommet n’a jamais plus de

d voisins.

6.10 Montrer qu’ajouter une aréte a un graphe augmente son nombre chromatique

d’au plus 1.

Avec plus d’efforts, on peut améliorer le résultat du théoréeme précédent.

Théoréme de Brooks (1941) Si G est un graphe simple et connexe sans
étre un graphe complet, et si le plus haut degré des sommets de G est d (d > 3),

alors x(G) < d.

Nous ne démontrerons pas ce théoreme, mais nous allons en illustrer ’emploi.

Exemple
Considérons a nouveau le graphe G ci-contre.

Nous avons déja vu que 4 < x(G), du fait que G

contient le graphe complet Kjy.

Par ailleurs, G satisfait les conditions du théoreme de
Brooks avec d = 4, d’ou x(G) < 4.

On conclut que x(G) = 4.
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6.11

6.12

6.13

Malheureusement, la situation n’est pas toujours aussi favorable. En particu-
lier, si G contient un petit nombre de sommets de degré élevé, la borne proposée
par le théoreme de Brooks n’est du tout satisfaisante.

Par exemple, considérons le graphe ci-contre.
D’apres le théoreme de Brooks, x(G) < 12, alors
que x(G) = 2.

Dessiner deux graphes non isomorphes, simples et connexes, comportant 5 som-
mets, dont le plus haut degré est d, et tels que x(G) =d + 1.

Polynéme chromatique

Malgré les résultats obtenus ci-dessus, déterminer de maniere efficace le nombre
chromatique reste encore un probléme non résolu. Nous avons vu que la mé-
thode consistant a essayer toutes les possibilités devient rapidement imprati-
cable. Pourtant, il existe des algorithmes qui améliorent substantiellement la
recherche du nombre chromatique. Nous allons en présenter un qui utilise des
techniques algébriques.

Soit G un graphe simple. Notons Pg(A) le nombre de fagons de colorier les
sommets de G avec A\ couleurs. La fonction Pg(A) s’appelle le polyndéme
chromatique® de G.

Déterminer le polynéme P (A) si G est le graphe nul (sans arétes) a n sommets.

Déterminer le polynéme Pg(\) si G est le graphe complet K,,.

Proposition Si G est un arbre a n sommets, alors Pg(\) = A (A —1)"71.

Preuve On montre le résultat par récurrence sur le nombre de sommets n.
Sin =1, on a évidemment Pg(\) = .

S} n > 1, 'arbre possede une extrémité, c’est-a-dire un sommet a de degré 1.
Otons de G le sommet a et I’aréte issue de a. Le graphe H restant est un arbre
a n — 1 sommets. L’hypotheése de récurrence implique Pg(A) = A (A — 1) 72,
Dans un coloriage de G, le sommet a peut recevoir I'une quelconque des A\ cou-
leurs, a part celle de son unique voisin, d’ou Pg(\) = Pg(A) (A —1).

On conclut finalement que Pg(A\) = A(A —1)"2(A—1)=A(A—1)""L.

1. Il n’est pas évident a priori que le nombre de A-coloriages d’un graphe G soit un
polynéme en A. Ce résultat sera établi plus tard (théoréme de Birkhoff).
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6.14

Il est clair que :

— si A < x(G), alors Pg(\) =0;

— si A = x(G), alors Pg(A\) > 0.
Le nombre chromatique de G est ainsi le plus petit entier positif A\ pour lequel
Pa(A) > 0. C’est pourquoi trouver une méthode pour calculer Pg()), c’est
trouver une méthode pour calculer x(G).

Ecrire les polynomes chromatiques des graphes suivants
1) le graphe complet Kg;
2) le graphe bipartite complet Kj 5 :-k.

De combien de maniéres ces graphes peuvent-ils étre coloriés avec 7 couleurs ?

Le théoreme suivant va fournir une méthode systématique pour obtenir le
polynome chromatique d'un graphe a partir du polynéme chromatique d’un
graphe nul.

Mais, pour pouvoir I’énoncer, nous devons d’abord définir deux opérations sur
les graphes.

Soit une aréte e reliant des sommets u et v d'un graphe G.
Le graphe G — e est le graphe obtenu a partir de G en supprimant l'aréte e.

Le graphe G \ e est le graphe obtenu en contractant e, c’est-a-dire en suppri-
mant e et en identifiant les sommets u et v.

Exemple Nous avons représenté ci-dessous les graphes G, G —e et G\ e :

N4

Théoréme (suppression-contraction) Soient un graphe simple G, G — e
le graphe obtenu en supprimant une aréte e et G \ e le graphe obtenu en
contractant cette aréte e. Alors :

PG<)‘) = PG*G()\) - PG\e<)‘>

Preuve Les coloriages de G — e peuvent se partager en deux classes dis-
jointes : la classe C; ou u et v sont de couleurs différentes et la classe Cy ol u
et v sont de méme couleur. Posons N; = |Cq| et Ny = |Cyl.
1°r cas : u et v sont de couleurs différentes.
La suppression de l'aréte e dans G n’affecte en rien le coloriage de G,
d’out Ny = P ().
2nd cas : u et v sont de méme couleur.
Le nombre de coloriages de G — e vaut dans ce cas Ny = Pg. ().

Il en résulte Pg_(A) = Ny + Ny = Pg(\) + Pge(X), d’ou le théoreme.
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L’intérét du théoreéme ci-dessus est de donner une formule de récurrence pour
calculer Pg(A) selon 'une des méthodes suivantes :

1) apres avoir retiré successivement toutes les arétes, on parvient au graphe
nul avec n sommets ;

2) dans lautre sens, en ajoutant chaque fois une aréte, on parvient au
graphe complet K,,.
Pour n fixé, quand le nombre d’arétes est petit, la premiere méthode est pré-
férable ; quand le nombre d’arétes est grand, c’est la seconde méthode qui est
préférable.

[lustrons ces deux méthodes pour le graphe cyclique Cy, en symbolisant le
polynome chromatique d’un graphe par le graphe lui-méme, dessiné entre ac-
colades.

Exemple : réduction au graphe nul

BEEN
SNy
L)

)\2(>\ —)\()\— )= A -1 (A-2)

Exemple : complétion en K,

T
)
7))
D7)

)

N

(>\ DA=2)(A=3) + AN =1)(A—2) + A(A—1)?
AN 4 6X2—3)
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6.15

6.16

6.17

6.18

6.19

Déterminer le polynéme chromatique des graphes suivants :
1) E 2) :

Déterminer le polynéme chromatique des graphes suivants :
1) E ] 2) AN

Déterminer le polynéme chromatique des graphes suivants :

1) A 2)

Construire des graphes possédant les polynomes chromatiques suivants :
HAXA=-1)(A-2) ) AA=1)2(A=-2)
3)AN—=1)(A—2)? HAN=1)(A=2)(A=3)

Trouver un graphe admettant A\> — 6 \* + 11 A® — 6 A2 pour polynoéme chroma-
tique.

Théoréeme de Birkhoff Soit G un graphe simple avec n sommets et m arétes.
Alors Pg () est un polynéme unitaire de degré n en A, a coefficients entiers et
de terme constant nul. De plus, ses coefficients alternent en signe et le coeffi-
cient de \"~! vaut —m.
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Preuve La démonstration se fait par récurrence sur le nombre d’arétes du
graphe dont le nombre de sommets n est fixé.

Sim =0, G est le graphe nul avec n sommets, donc Pg(A) = A\".

Soit. G un graphe d’ordre n avec m arétes et soit e une aréte quelconque de G.
Alafois G—cet Ge (apres suppression des arétes multiples si nécessaires)
sont des graphes simples avec au plus m — 1 arétes. Ainsi, par hypothese de
récurrence, on a :

Pc_ e()\) —an 1)\n71+“.+ (—].)nil ap A
PG\e()\) =0, 2>\n72+”.+(_1)n72 b1 A

ol ai,...,0,_1,b1,...,b,_o sont des entiers non négatifs et a,,_1 = m —1 =
nombre d’arétes de G — e.

D’apres le théoreme de suppression-contraction, Pg(A) = Pg_c(A) — Pgc(N),
de sorte que :

PaA) = A" — (a1 + DA 4+ (=) (ag +by) A

Puisque a,,_1 + 1 = m, Pg(\) vérifie toutes les propriétés annoncées.

6.20 Montrer que les polynémes suivants ne sont pas des polynomes chromatiques
de graphes.

1) AT= X0 +1 2) M —3X N2
Réponses
6.1 X(K,) =n
6.2 (C)) = {2 s% n est pair |

3 sin est impair

6.3 2 (sl possede au moins 2 sommets)
6.4 3
6.5 1) 3 2) 3 3) 2

4) 4 5) 5 6) 4
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6.6

6.7

6.8

6.9

6.11
6.12
6.13

6.14

6.15

6.16

6.17

6.18

6.19

‘a,e,f‘b‘c,g‘d‘

4 enclos sont nécessaires et suffisent : ‘ AC ‘ B E ‘ D H ‘ F G ‘

1) 1, )2 2) 1 2 3) 1 2
3 4 2 3 2 1
2 1 3 1 12
3 2 1
2) !
9 2 1
4 3
K5 et C5
Pg(A) = A"

Pe(A) = AA—1)(A—=2) - (A—n+1)

DAA=DA=2)(A=3)(A—4)(A\—5) 5040 2) A\(A—1)> 54432
DAA—1)2(A—2) 2) A(A—1) (A —2)?

1) A —1)% (A — 2)2 2) AN —1) (A —2) (A2 =2\ +2)
DAA—DA=2)(A2=3A+3) 2 AA-1A=2)(A2—5A+7)
DA 2)]

3)6 4) I

A :
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