
6 Coloriage de graphes

Sans les problèmes de coloriage, la théorie des graphes ne serait pas ce qu’elle
est aujourd’hui. La raison en est le célèbre problème des quatre couleurs, déjà
mentionné dans l’introduction, qui a stimulé la recherche dans ce domaine au
cours du xx

e siècle.

Dans un graphe, on peut envisager la question du coloriage de deux manières :
colorier les sommets ou les arêtes. On se bornera ici aux résultats de base sur
le coloriage des sommets.

Coloriage des sommets

On appelle coloriage des sommets d’un graphe G = (V ;E) l’opération
qui consiste à affecter une couleur à chaque sommet de telle sorte que deux
sommets voisins ne portent jamais la même couleur.

Si le coloriage utilise k couleurs, on dit que G est k-coloriable.

Le nombre chromatique de G, noté χ(G), est le plus petit nombre de cou-
leurs permettant de colorier le graphe G.

Remarques
— Les définitions précédentes ne sont données que pour des graphes simples.

Les boucles doivent être exclues, car dans tout k-coloriage les sommets
aux extrémités de toutes les arêtes doivent avoir des couleurs différentes.
Dans ce cas, un sommet qui comporterait une boucle devrait avoir deux
couleurs.
On exclut aussi les arêtes multiples entre deux sommets, car celles-ci ne
changent rien à la nature du coloriage.

— Pour des raisons de commodité, on décrit les couleurs par des nombres
1, 2, . . . que l’on écrit à côté des sommets concernés.

Exemples Les graphes 1) et 2) illustrent un coloriage de G avec respective-
ment 4 et 3 couleurs, alors que le graphe 3) n’est pas un coloriage de G.

1) 1

2

3 4

3

2) 3

1

2 1

2

3) 2

1

3 2

3

Le problème le plus important est de calculer χ(G).

6.1 Trouver le nombre chromatique de K2, K3, K4, K5 et Kn.

6.2 Trouver le nombre chromatique du graphe cyclique Cn.
Indication : distinguer les cas n pair et n impair.
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6.3 Trouver le nombre chromatique d’un arbre.

En général, pour montrer que le nombre chromatique d’un graphe G donné
vaut k, il faut vérifier deux choses :

1) trouver un coloriage qui utilise k couleurs ;

2) montrer qu’il n’y a aucun coloriage possible avec moins de k couleurs.

Pour cela, on peut s’aider de la propriété suivante :
si H est un sous-graphe de G, alors χ(H) 6 χ(G).

On peut encore remarquer que si G a n sommets, alors χ(G) 6 n.

Exemple

1

2

4 3

1

3 2

4

2 3

Déterminons le nombre chromatique du
graphe G ci-contre.

On commence par construire un coloriage avec
4 couleurs ; donc χ(G) 6 4.

Mais G ne peut pas être colorié avec moins de
4 couleurs, car G contient le graphe complet K4 ;
donc 4 = χ(K4) 6 χ(G).

Finalement χ(G) = 4.

6.4 Déterminer le nombre chromatique du graphe suivant :

6.5 Déterminer le nombre chromatique pour chacun des graphes suivants :

1) 2) 3)

4) 5) 6)
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Applications

On peut modéliser la résolution d’un problème de recherche opérationnelle par
un coloriage de graphe en groupant dans la même classe des individus ou des
objets qui n’entrent pas en conflit.

Exemples

Un problème de stockage Supposons qu’une entreprise ait à stocker des
produits chimiques. Certains d’entre eux peuvent réagir violemment (explo-
sion, dégagement toxique, etc. . . ) s’ils entrent en contact. Pour cette raison,
de tels produits sont dits incompatibles. Pour les garder avec sécurité, il est
nécessaire de les conserver dans des zones séparées. Le plus simple serait d’at-
tribuer une zone de stockage par produit, mais on risque alors d’utiliser plus
de zones que nécessaires (sauf si tous les produits sont mutuellement incom-
patibles). Quel est le nombre minimum de zones requises pour conserver tous
ces produits de manière sécurisée ?

Ce problème de stockage se traduit en un problème de coloriage d’un graphe.
Considérons le graphe G = (V ;E) où V représente l’ensemble des produits
chimiques et E l’ensemble d’arêtes reliant deux produits incompatibles. Déter-
miner le nombre minimum de zones revient à déterminer χ(G).

Un problème d’horaire Une université doit organiser les horaires des exa-
mens. On suppose qu’il y a 7 épreuves à planifier correspondant aux cours
numérotés de 1 à 7. Il ne peut y avoir qu’une épreuve par jour. Les paires de
cours suivants ont des étudiants communs : 1 et 2, 1 et 3, 1 et 4, 1 et 7, 2 et 3,
2 et 4, 2 et 5, 2 et 7, 3 et 4, 3 et 6, 3 et 7, 4 et 5, 4 et 6, 5 et 6, 5 et 7, 6 et 7.
Comment organiser sur une durée minimale ces épreuves de façon qu’aucun
étudiant n’ait à passer deux épreuves le même jour ?

À cette fin, construisons le graphe G dont les sommets sont les épreuves nu-
mérotées de 1 à 7. Une arête relie deux sommets lorsque les deux cours corres-
pondants possèdent des étudiants communs :

1

2

3

45

6

7

Planifier les examens en un temps minimal consiste à déterminer une k-coloration
de G, avec k = χ(G).

G possède un sous-graphe complet d’ordre 4 (de sommets 1, 2, 3, 4), donc 4 6

χ(G). Déterminons une partition de G en sous-ensemble stables, à savoir en
sous-ensembles ne contenant que des sommets non voisins :

S1 = {1 ; 6} S2 = {2} S3 = {3 ; 5} S4 = {4 ; 7}
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d’où χ(G) 6 4 et finalement χ(G) = 4.

Les examens peuvent être répartis en 4 jours de la manière suivante :
— 1er jour : épreuves des cours 1 et 6 ;
— 2e jour : épreuves du cours 2 ;
— 3e jour : épreuves des cours 3 et 5 ;
— 4e jour : épreuves des cours 4 et 7.

6.6 Dans un congrès, on cherche à planifier l’horaire d’une série de conférences
qui doivent être toutes de même durée. Dans le tableau ci-dessous, les étoiles
indiquent les interventions qui ne peuvent pas coïncider. Comment procéder
pour que la durée totale des interventions soit minimale ?

a b c d e f g
a – ⋆ ⋆ ⋆ – – ⋆

b ⋆ – ⋆ ⋆ ⋆ – ⋆

c ⋆ ⋆ – ⋆ – ⋆ –
d ⋆ ⋆ ⋆ – – ⋆ –
e – ⋆ – – – – –
f – – ⋆ ⋆ – – ⋆

g ⋆ ⋆ – – – ⋆ –

6.7 Un gardien de zoo souhaite placer 8 animaux A, B, C, D, E, F, G et H dans des
enclos. Le tableau ci-dessous indique par des croix les animaux qui, pour des
raisons de sécurité, doivent être placés dans des enclos différents. Déterminer
à l’aide d’un graphe convenable le nombre minimum d’enclos qui permet de
placer ces animaux de façon judicieuse.

A B C D E F G H

A – × – – × × – ×
B × – × – – × – ×
C – × – × – × × ×
D – – × – × × × –
E × – – × – × × –
F × × × × × – – –
G – – × × × – – ×
H × × × – – – × –

Algorithme glouton

Il y a un algorithme naïf pour décider si un graphe G de n sommets peut
être colorié avec k couleurs. Il suffit de vérifier si l’un des kn coloriages est
acceptable. En itérant cet algorithme pour un nombre croissant de k couleurs,
on obtient un algorithme pour calculer le nombre chromatique, mais le temps
pour l’effectuer croît exponentiellement avec le nombre des sommets.
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Trouver le nombre chromatique d’un graphe donné est un problème difficile. On
ne connaît actuellement aucun algorithme qui fonctionne en temps polynomial
et la plupart des spécialistes pensent qu’il n’en existe aucun.

Pourtant, il existe une méthode simple de coloriage : elle consiste à numéroter
les sommets du graphe et à colorier successivement chaque sommet avec la pre-
mière couleur qui n’a pas encore été attribuée à ses voisins. Malheureusement,
ce procédé ne fournit pas forcément un coloriage minimum.

On procède comme suit :
— On numérote arbitrairement les sommets de G, à savoir v1, v2, . . . , vn,

de même que les couleurs à disposition.
— On affecte la couleur 1 à v1.
— On considère ensuite le sommet suivant v2 et on lui attribue la première

couleur non déjà attribuée à ses voisins. Dans ce cas, c’est la couleur 1
ou 2.

— Plus généralement, soit le sommet vi tel que tous les sommets précédents
v1, v2, . . . , vi−1 soient déjà coloriés. On attribue alors à vi la première
couleur non déjà attribuée à ses voisins.

— On poursuit de même jusqu’à colorier ainsi tous les sommets.

Exemple Voici l’effet de l’algorithme glouton sur le graphe G :

v1 v2

v3

v4
v5

v6

v7

v8 v9 v10

1 2

3

1 2
2

1

3 4 2

1 2

3

2 2
2

3

3 1 1

L’application de l’algorithme glouton
montre que le graphe G est 4-coloriable.

Pourtant son nombre chromatique
χ(G) = 3, comme le montre la figure
ci-contre.

Remarques
— L’efficacité de l’algorithme glouton dépend beaucoup de l’ordre initial

donné aux sommets. Il y a n! ordres possibles et, si l’on veut les essayer
tous, l’algorithme requiert un temps exceptionnel.

— Il peut arriver que, dans la numérotation des sommets, l’on tombe pré-
cisément sur celle qui est associée à un coloriage minimum.

Malgré le gaspillage possible, cet algorithme est utilisé en théorie et en pratique.
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6.8 Utiliser l’algorithme glouton pour colorier les sommets du graphe suivant en
respectant dans chaque cas l’ordre proposé.

1) a

b

c

d

e

f g

h

2) a

b

f

h

c

d e

g

3) a

e

g

d

f

h c

b

Quelle est la valeur de χ(G) ?

6.9 Utiliser l’algorithme glouton pour colorier les graphes suivants :

1)

2 4 6 8

1 3 5 7 2) a

f

e d

b c

Théorème Si G est un graphe simple tel que le degré maximum des sommets
soit d, alors χ(G) 6 d + 1.

Preuve Quelle que soit la numérotation des sommets, l’algorithme glouton
n’utilise jamais plus de d + 1 couleurs, puisqu’un sommet n’a jamais plus de
d voisins.

6.10 Montrer qu’ajouter une arête à un graphe augmente son nombre chromatique
d’au plus 1.

Avec plus d’efforts, on peut améliorer le résultat du théorème précédent.

Théorème de Brooks (1941) Si G est un graphe simple et connexe sans
être un graphe complet, et si le plus haut degré des sommets de G est d (d > 3),
alors χ(G) 6 d.

Nous ne démontrerons pas ce théorème, mais nous allons en illustrer l’emploi.

Exemple
Considérons à nouveau le graphe G ci-contre.

Nous avons déjà vu que 4 6 χ(G), du fait que G

contient le graphe complet K4.

Par ailleurs, G satisfait les conditions du théorème de
Brooks avec d = 4, d’où χ(G) 6 4.

On conclut que χ(G) = 4.
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Malheureusement, la situation n’est pas toujours aussi favorable. En particu-
lier, si G contient un petit nombre de sommets de degré élevé, la borne proposée
par le théorème de Brooks n’est du tout satisfaisante.

Par exemple, considérons le graphe ci-contre.
D’après le théorème de Brooks, χ(G) 6 12, alors
que χ(G) = 2.

6.11 Dessiner deux graphes non isomorphes, simples et connexes, comportant 5 som-
mets, dont le plus haut degré est d, et tels que χ(G) = d + 1.

Polynôme chromatique

Malgré les résultats obtenus ci-dessus, déterminer de manière efficace le nombre
chromatique reste encore un problème non résolu. Nous avons vu que la mé-
thode consistant à essayer toutes les possibilités devient rapidement imprati-
cable. Pourtant, il existe des algorithmes qui améliorent substantiellement la
recherche du nombre chromatique. Nous allons en présenter un qui utilise des
techniques algébriques.

Soit G un graphe simple. Notons PG(λ) le nombre de façons de colorier les
sommets de G avec λ couleurs. La fonction PG(λ) s’appelle le polynôme
chromatique 1 de G.

6.12 Déterminer le polynôme PG(λ) si G est le graphe nul (sans arêtes) à n sommets.

6.13 Déterminer le polynôme PG(λ) si G est le graphe complet Kn.

Proposition Si G est un arbre à n sommets, alors PG(λ) = λ (λ − 1)n−1.

Preuve On montre le résultat par récurrence sur le nombre de sommets n.

Si n = 1, on a évidemment PG(λ) = λ.

Si n > 1, l’arbre possède une extrémité, c’est-à-dire un sommet a de degré 1.
Ôtons de G le sommet a et l’arête issue de a. Le graphe H restant est un arbre
à n − 1 sommets. L’hypothèse de récurrence implique PH(λ) = λ (λ − 1)n−2.

Dans un coloriage de G, le sommet a peut recevoir l’une quelconque des λ cou-
leurs, à part celle de son unique voisin, d’où PG(λ) = PH(λ) (λ − 1).

On conclut finalement que PG(λ) = λ (λ − 1)n−2 (λ − 1) = λ (λ − 1)n−1.

1. Il n’est pas évident a priori que le nombre de λ-coloriages d’un graphe G soit un
polynôme en λ. Ce résultat sera établi plus tard (théorème de Birkhoff).
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Il est clair que :
— si λ < χ(G), alors PG(λ) = 0 ;
— si λ > χ(G), alors PG(λ) > 0.

Le nombre chromatique de G est ainsi le plus petit entier positif λ pour lequel
PG(λ) > 0. C’est pourquoi trouver une méthode pour calculer PG(λ), c’est
trouver une méthode pour calculer χ(G).

6.14 Écrire les polynômes chromatiques des graphes suivants :

1) le graphe complet K6 ;

2) le graphe bipartite complet K1,5 :

De combien de manières ces graphes peuvent-ils être coloriés avec 7 couleurs ?

Le théorème suivant va fournir une méthode systématique pour obtenir le
polynôme chromatique d’un graphe à partir du polynôme chromatique d’un
graphe nul.

Mais, pour pouvoir l’énoncer, nous devons d’abord définir deux opérations sur
les graphes.

Soit une arête e reliant des sommets u et v d’un graphe G.

Le graphe G − e est le graphe obtenu à partir de G en supprimant l’arête e.

Le graphe Gr e est le graphe obtenu en contractant e, c’est-à-dire en suppri-
mant e et en identifiant les sommets u et v.

Exemple Nous avons représenté ci-dessous les graphes G, G − e et Gr e :

uv e uv u = v

Théorème (suppression-contraction) Soient un graphe simple G, G − e

le graphe obtenu en supprimant une arête e et G r e le graphe obtenu en
contractant cette arête e. Alors :

PG(λ) = PG−e(λ) − PGre(λ)

Preuve Les coloriages de G − e peuvent se partager en deux classes dis-
jointes : la classe C1 où u et v sont de couleurs différentes et la classe C2 où u

et v sont de même couleur. Posons N1 = |C1| et N2 = |C2|.

1er cas : u et v sont de couleurs différentes.
La suppression de l’arête e dans G n’affecte en rien le coloriage de G,
d’où N1 = PG(λ).

2nd cas : u et v sont de même couleur.
Le nombre de coloriages de G − e vaut dans ce cas N2 = PGre(λ).

Il en résulte PG−e(λ) = N1 + N2 = PG(λ) + PGre(λ), d’où le théorème.
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L’intérêt du théorème ci-dessus est de donner une formule de récurrence pour
calculer PG(λ) selon l’une des méthodes suivantes :

1) après avoir retiré successivement toutes les arêtes, on parvient au graphe
nul avec n sommets ;

2) dans l’autre sens, en ajoutant chaque fois une arête, on parvient au
graphe complet Kn.

Pour n fixé, quand le nombre d’arêtes est petit, la première méthode est pré-
férable ; quand le nombre d’arêtes est grand, c’est la seconde méthode qui est
préférable.

Illustrons ces deux méthodes pour le graphe cyclique C4, en symbolisant le
polynôme chromatique d’un graphe par le graphe lui-même, dessiné entre ac-
colades.

Exemple : réduction au graphe nul












=













−













=













−













−













=













−



















−

















 −













=
(

λ (λ − 1)
)2

−
(

λ2 (λ − 1) − λ (λ − 1)
)

− λ (λ − 1) (λ − 2)

= λ4 − 4 λ3 + 6 λ2 − 3 λ

Exemple : complétion en Kn












=













+













=













+













=













+













+













=













+













+













= λ (λ − 1) (λ − 2) (λ − 3) + λ (λ − 1) (λ − 2) + λ (λ − 1)2

= λ4 − 4 λ3 + 6 λ2 − 3 λ
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6.15 Déterminer le polynôme chromatique des graphes suivants :

1) 2)

6.16 Déterminer le polynôme chromatique des graphes suivants :

1) 2)

6.17 Déterminer le polynôme chromatique des graphes suivants :

1) 2)

6.18 Construire des graphes possédant les polynômes chromatiques suivants :

1) λ2 (λ − 1) (λ − 2) 2) λ (λ − 1)2 (λ − 2)

3) λ (λ − 1) (λ − 2)2 4) λ (λ − 1) (λ − 2) (λ − 3)

6.19 Trouver un graphe admettant λ5 − 6 λ4 + 11 λ3 − 6 λ2 pour polynôme chroma-
tique.

Théorème de Birkhoff Soit G un graphe simple avec n sommets et m arêtes.
Alors PG(λ) est un polynôme unitaire de degré n en λ, à coefficients entiers et
de terme constant nul. De plus, ses coefficients alternent en signe et le coeffi-
cient de λn−1 vaut −m.
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Preuve La démonstration se fait par récurrence sur le nombre d’arêtes du
graphe dont le nombre de sommets n est fixé.

Si m = 0, G est le graphe nul avec n sommets, donc PG(λ) = λn.

Soit G un graphe d’ordre n avec m arêtes et soit e une arête quelconque de G.
À la fois G − e et Gr e (après suppression des arêtes multiples si nécessaires)
sont des graphes simples avec au plus m − 1 arêtes. Ainsi, par hypothèse de
récurrence, on a :

PG−e(λ) = λn − an−1 λn−1 + . . . + (−1)n−1 a1 λ

PGre(λ) = λn−1 − bn−2 λn−2 + . . . + (−1)n−2 b1 λ

où a1, . . . , an−1, b1, . . . , bn−2 sont des entiers non négatifs et an−1 = m − 1 =
nombre d’arêtes de G − e.

D’après le théorème de suppression-contraction, PG(λ) = PG−e(λ) − PGre(λ),
de sorte que :

PG(λ) = λn − (an−1 + 1) λn−1 + . . . + (−1)n−1 (a1 + b1) λ

Puisque an−1 + 1 = m, PG(λ) vérifie toutes les propriétés annoncées.

6.20 Montrer que les polynômes suivants ne sont pas des polynômes chromatiques
de graphes.

1) λ7 − λ6 + 1 2) λ4 − 3 λ3 + λ2 − λ

Réponses

6.1 χ(Kn) = n

6.2 χ(Cn) =







2 si n est pair

3 si n est impair

6.3 2 (s’il possède au moins 2 sommets)

6.4 3

6.5 1) 3 2) 3 3) 2

4) 4 5) 5 6) 4
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6.6 a, e, f b c, g d

6.7 4 enclos sont nécessaires et suffisent : A C B E D H F G

6.8 1) 1

1

2

2

3

3 4

4

2) 1

1

2

3

2

2 3

3

3) 1

2

2

1

2

2 1

1

χ(G) = 2

6.9 1)

1 2 3 4

1 2 3 4 2) 1

2

4 3

2 1

6.11 K5 et C5

6.12 PG(λ) = λn

6.13 PG(λ) = λ (λ − 1) (λ − 2) · · · (λ − n + 1)

6.14 1) λ (λ − 1) (λ − 2) (λ − 3) (λ − 4) (λ − 5) 5040 2) λ (λ − 1)5 54 432

6.15 1) λ (λ − 1)2 (λ − 2) 2) λ (λ − 1) (λ − 2)2

6.16 1) λ (λ − 1)3 (λ − 2)2 2) λ (λ − 1) (λ − 2) (λ2 − 2 λ + 2)

6.17 1) λ (λ − 1) (λ − 2) (λ2 − 3 λ + 3) 2) λ (λ − 1) (λ − 2) (λ2 − 5 λ + 7)

6.18 1) 2)

3) 4)

6.19
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