
7 Algorithmes efficaces

En théorie des graphes, nous avons déjà vu ce qu’est un algorithme, à savoir
la donnée d’une série d’instructions qui permettent, pas à pas, d’obtenir la
solution d’un problème donné.

Dans la pratique, la découverte d’un algorithme pour résoudre un problème
n’est pas suffisante. Il faut encore se poser la question de son efficacité. Pour
mieux comprendre ce que cela veut dire, revenons au problème du voyageur
de commerce et supposons que celui-ci, habitant la ville A, dispose de la carte
routière suivante avec les distances entre les villes (il doit revenir en A).
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7.1 La manière la plus évidente de résoudre ce problème est d’employer la « force
brute » :

1) faire la liste de tous les itinéraires possibles ;

2) calculer la longueur de chacun d’entre eux ;

3) sélectionner celui qui est le plus court.

7.2 1) Combien y a-t-il d’itinéraires possibles dans l’exercice précédent ?

2) En supposant que le graphe soit complet, combien y a-t-il d’itinéraires
possibles pour

(a) 6 villes ?

(b) 7 villes ?

(c) n villes ?

3) Imaginons qu’un ordinateur très rapide puisse décrire un itinéraire et calcu-
ler sa longueur en 10 microsecondes. Combien de temps lui faudrait-il, avec
20 villes, pour déterminer le trajet le plus court en utilisant la méthode de
la « force brute » ?

La technique de la « force brute » ou autrement dit de l’énumération exhaustive
peut être très efficace sur de petits exemples, mais quand les données sont
d’une certaine importance, elle devient complètement impraticable. À part
le fait d’exiger qu’un algorithme ait chacune de ses étapes bien définies et
fournisse la solution en un nombre fini d’étapes, il faut donc encore ajouter
des considérations d’ordre pratique. Est-ce que le problème, pour des données
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de taille modérée, peut être résolu par tel ou tel algorithme en un temps
raisonnable ? Répondre à cette question implique de dénombrer chacune des
opérations qui sont faites à chaque étape.

Par exemple, dans l’algorithme de Fleury, on peut vérifier que ce nombre est
proportionnel à n où n est le nombre d’arêtes. Pour l’algorithme de connexion
minimale, ce nombre est à peu près proportionnel à n

2 où n est le nombre de
sommets.

Dans ces cas ou dans d’autres où le temps utilisé pour faire fonctionner l’algo-
rithme est un polynôme en n, où n représente un certain paramètre associé à
la quantité des données implémentées dans l’ordinateur, on parle d’algorithme
en temps polynomial.

Il existe des algorithmes dont le temps de fonctionnement est de l’ordre d’une
puissance de n. C’est le cas par exemple lorsqu’il faut examiner toutes les
parties d’un ensemble à n éléments, puisqu’un tel ensemble a 2n parties. On
dit alors que ces algorithmes sont en temps exponentiel ; on les appelle aussi
algorithmes gloutons.

7.3 Imaginons que l’on utilise un ordinateur capable d’effectuer 1000 opérations
à la seconde. Compléter le tableau suivant qui donne les temps approxima-
tifs nécessaires pour effectuer divers algorithmes, les uns en temps polynomial
(d’ordre n et n

3), les autres en temps exponentiel (d’ordre 2n et 3n).

n = 10 n = 50 n = 100
n

n
3

2n

3n

L’exercice 7.3 montre pourquoi l’on considère les algorithmes en temps poly-
nomial comme efficaces, alors que les algorithmes en temps exponentiel sont
considérés de peu d’utilité sauf dans les exemples de petite taille.

Algorithme de Dijkstra

L’algorithme de Dijkstra est un algorithme en temps polynomial (d’ordre n
2)

qui permet de trouver quelle est la longueur du plus court chemin qui joint
deux villes déterminées lorsqu’on connaît la longueur des routes.

Par exemple, considérons la situation suivante où les sommets représentent des
villes, les arêtes des routes et les nombres des distances.
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On cherche à déterminer le plus court chemin allant de S à E.

L’idée générale de l’algorithme de Dijkstra est de parcourir le graphe en allant
de S à E en attribuant de proche en proche à chaque sommet un poids qui est
égal à la plus petite des distances entre S et ce sommet.

Plus précisément, on procède comme suit.

Initialisation Tous les sommets sont non marqués et ont un poids provi-
soire infini, sauf le sommet de départ qui a un poids nul.

Itérations Tant qu’il existe un sommet non marqué :
— choisir le sommet T qui possède le plus petit poids provisoire ;
— fixer définitivement le poids de T et marquer le sommet T ;
— pour chaque sommet U non marqué et voisin de T :

• calculer la somme s du poids de T et du poids de l’arête reliant T
à U ;

• si s est inférieur au poids provisoire de U, affecter s à U comme
nouveau poids provisoire et le noter s(T) pour indiquer ainsi la
provenance de cette dernière affectation, sinon conserver le poids
provisoire.

Voici l’application de cet algorithme au graphe précédent :
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Le plus court chemin a un poids 6.
Il se lit à l’envers : EDCBS.

On peut aussi représenter les différentes étapes de l’algorithme exécutées sur
cet exemple par un tableau :

S A B C D E sommets marqués
0
0 3(S) 1(S) S

2(B) 1(S) 4(B) 6(B) S,B

2(B) 4(B) 6(B) S,B,A

4(B) 5(C) 7(C) S,B,A,C

5(C) 6(D) S,B,A,C,D

6(D) S,B,A,C,D,E

7.4 Utiliser l’algorithme de Dijkstra pour trouver le chemin de poids minimal
entre A et F :
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7.5 Utiliser l’algorithme de Dijkstra pour trouver le chemin de poids minimal
entre A et G :
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7.6 Utiliser l’algorithme de Dijkstra pour trouver le chemin de poids minimal
entre A et G :
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7.7 Utiliser l’algorithme de Dijkstra pour trouver le chemin de poids minimal
entre S et E, en prenant garde au fait qu’il s’agit d’un graphe orienté.
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Le problème du postier

Un postier cherche à distribuer ses lettres en parcourant la plus petite distance
tout en retournant à son point de départ. Il doit passer évidemment par chaque
rue au moins une fois en évitant autant que possible de repasser par un tronçon
déjà parcouru.

Il y a quelques années, la ville de Zürich commandita une grande étude pour
déterminer rationnellement le plan de déneigement de ses rues. C’est, en plus
compliqué, un problème semblable à celui du postier. En effet, il est nécessaire
en plus de partager habilement la ville en secteurs de manière à occuper chaque
véhicule de déneigement.

Le problème peut être reformulé en termes de graphe pondéré où le graphe
correspond au réseau des rues et le poids de chaque arête à la longueur de la
rue correspondante. Dans cette nouvelle formulation, l’exigence est de trouver
un chemin fermé de poids minimal qui inclut chaque arête au moins une fois.

Si le graphe est eulérien, chaque chemin eulérien sera un itinéraire acceptable.
Un tel chemin peut être obtenu si nécessaire à l’aide de l’algorithme de Fleury.

Par contre, si le graphe n’est pas eulérien, le problème est beaucoup plus
difficile. On connaît cependant un algorithme efficace pour trouver la solution,
même s’il est trop compliqué pour être donné ici. La solution générale s’inspire
du cas particulier où le graphe est semi-eulérien.

Considérons par exemple le graphe suivant :
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Puisque B et E sont les deux seuls sommets de degré impair, nous pouvons
trouver un chemin semi-eulérien allant de B à E en parcourant chaque arête
une seule fois.

Pour retourner au point de départ en parcourant la plus petite distance pos-
sible, nous pouvons trouver le plus court chemin allant de B à E en utilisant
l’algorithme de Dijkstra.

La solution du problème du postier est obtenue dans ce cas en joignant le
plus court chemin EFAB au chemin semi-eulérien initial BAFBCFECDE. La
distance totale vaut donc 13 + 64 = 77.

7.8 Résoudre le problème du postier pour le graphe pondéré ci-dessous :
A

B

CD

E

2

7

1

2

2

4

3

7.9 Résoudre le problème du postier pour le graphe pondéré ci-dessous :
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7.10 Résoudre le problème du postier pour le graphe pondéré ci-dessous :
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Réponses

7.1 ABCDEA 109 ACBDEA 121 ADBCEA 116 AEBCDA 115

ABCEDA 105 ACBEDA 116 ADBECA 137 AEBDCA 141

ABDECA 131 ACDBEA 141 ADCBEA 115 AECBDA 116

ABDCEA 130 ACDEBA 130 ADCEBA 125 AECDBA 130

ABEDCA 130 ACEBDA 137 ADEBCA 116 AEDBCA 121

ABECDA 125 ACEDBA 131 ADECBA 105 AEDCBA 109

7.2 1) 4! = 24 2) 5! = 120 6! = 720 (n − 1)! 3) 38 573 années

7.3
n = 10 n = 50 n = 100

n 0,01 s 0,05 s 0,1 s
n

3 1 s 2 min 16 min
2n 1 s 35 702 ans 4 · 1019 ans
3n 1 min 2,27 · 1013 ans 1,63 · 1037 ans

7.4 AEDF de poids 10

7.5 ABDCFEG de poids 77

7.6 ABEHFIKG de poids 17

7.7 SCFE de poids 10

7.8 BAEDCBECDEB de poids 27

7.9 BACDAEDBCAEDB de poids 24

7.10 CDEFABCEBFEDC de poids 79
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