
7.10 On constate que le graphe est semi-eulérien, car tous les sommets, hormis C

et F, sont de degré pair.

Appliquons l’algorithme de Fleury pour déterminer un chemin semi-eulérien.
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On a ainsi trouvé un chemin semi-eulérien : CDEFABCEBF, dont le poids
vaut 3 + 4 + 7 + 9 + 5 + 5 + 8 + 14 + 10 = 65.

Il reste à utiliser l’algorithme de Dijkstra pour trouver le chemin le plus court
menant de F à C.
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Le chemin le plus court menant de F à C est donc : FEDC, de poids 14.

En définitive, le postier devra parcourir le chemin CDEFABCEBFEDC de
poids 65 + 14 = 79.
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