
7.9 On constate que le graphe est semi-eulérien, car tous les sommets, hormis B

et C, sont de degré pair.

Appliquons l’algorithme de Fleury pour déterminer un chemin semi-eulérien.
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On a ainsi trouvé un chemin semi-eulérien : BACDAEDBC, dont le poids vaut
4 + 1 + 4 + 3 + 1 + 1 + 1 + 5 = 20.

Il reste à utiliser l’algorithme de Dijkstra pour trouver le chemin le plus court
menant de C à B.
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Le chemin le plus court menant de C à B est donc : CAEDB, de poids 4.

En définitive, le postier devra parcourir le chemin BACDAEDBCAEDB de
poids 20 + 4 = 24.
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