
1 Introdu
tion

Problèmes historiquement 
élèbres

Les ponts de Könisberg

Le problème des ponts de Könisberg est à l'origine de la théorie des graphes.

Cette ville de Prusse orientale est bâtie sur les bords d'une rivière ainsi que sur

deux îles. Le problème 
onsiste à trouver une promenade à partir d'un point

donné qui fasse revenir à 
e point en passant une fois et une seule par 
ha
un

des sept ponts de la ville de Königsberg.

Personne n'ayant trouvé de solution, on se tourna vers le plus grand mathé-

mati
ien de l'époque, Leonhard Euler. L'arti
le qu'il publia en 1741 montre

que l'on peut s
hématiser la situation (les deux îles, les deux bords et les sept

ponts) par un diagramme que l'on appelle graphe :

A D

C

B

A

C

B

D

Euler a démontré que pour résoudre 
e problème, il su�t de mettre en éviden
e


ertaines propriétés du graphe.

1.1 Dessiner le graphe représentant les 
hemins de la �gure suivante et pré
iser le

nombre de sommets, le nombre d'arêtes et le degré de 
haque sommet.

P

Q

R

S T
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Le voyageur de 
ommer
e

De prime abord, le problème du voyageur de 
ommer
e s'apparente à 
elui des

ponts de Könisberg. Considérons par exemple 7 villes A, B, C, D, E, F et G

reliées entre elles par des routes selon le diagramme 
i-dessous :

A

B

C

D

E

F

G

Est-il possible de trouver un trajet qui, 
ommençant et se terminant par A,

passe exa
tement une fois par 
ha
une des villes B, C, D, E, F et G ?

La forme plus moderne de 
e problème est attribuée à Hassler Whitney et se

rappro
he de la situation réelle du voyageur de 
ommer
e. Dans un graphe


omme 
i-dessus, on attribue à 
haque arête un nombre positif (
orrespondant

à la distan
e, au 
oût, au temps, et
.) et l'on 
her
he un 
ir
uit fermé minimal

ne passant qu'une fois par 
haque sommet.

Ce problème n'a toujours pas de solution générale, bien que des solutions dans

des 
as parti
uliers aient été trouvées.

La question d'optimiser (rendre minimal ou maximal) une quantité apparaît

souvent en re
her
he opérationnelle. Considérons par exemple un voyageur

désirant aller en voiture d'Amsterdam à Floren
e. Il a en main le graphe suivant

qui donne les distan
es pour relier deux villes voisines.

Quel itinéraire doit-il prendre pour rendre le trajet le plus 
ourt possible ?

La dé
ouverte d'un algorithme permettant de traiter 
e genre de problèmes

n'a été faite qu'en 1959.
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1.2 Un gardien de zoo, 
ommençant sa visite par les antilopes, veut en
ore passer


hez les boas, les 
erfs, les dromadaires et les éléphants. Ces lieux sont no-

tés respe
tivement par A, B, C, D et E. Les distan
es sont indiquées sur le

diagramme.

A

B

CD

E

7

5

9

8

2

6

3

10

11

4

Trouver l'itinéraire le plus 
ourt possible 
ommençant et �nissant par A.

Coloriage des 
artes

Considérons, par exemple, la 
arte des États-Unis sans l'Alaska ni Hawaï.

On 
olorie 
e genre de 
artes en sorte que deux régions (i
i des États) voisines

aient une 
ouleur di�érente. La question de savoir 
ombien de 
ouleurs sont

né
essaires a été posée pour la première fois par Fran
is Guthrie en 1852 et a

fait depuis l'objet de nombreuses re
her
hes par des mathémati
iens de renom

(Morgan, Cayley, Kempe).

En fait, il est assez fa
ile de montrer que 
inq 
ouleurs su�sent toujours quelle

que soit la 
arte, mais pas trois 
ouleurs. On le voit en 
onsidérant l'anneau

des 
inq États qui entourent le Nevada. Cet anneau né
essite au moins trois


ouleurs et le Nevada en a besoin d'une autre, d'où un minimum de quatre.
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Ainsi le problème du 
oloriage des 
artes est devenu pendant longtemps le


élèbre problème des quatre 
ouleurs : toute 
arte peut-elle être 
oloriée ave


quatre 
ouleurs ?

Il aura fallu attendre 1976 pour que deux mathémati
iens, Kenneth Appel et

Wolfgang Haken, utilisant plusieurs milliers d'heures d'ordinateur, trouvent

une preuve longue de plusieurs 
entaines de pages ave
 plus de 20 000 
on�-

gurations. Le 
élèbre problème était en�n résolu.

En dualisant le problème, 
'est-à-dire en remplaçant 
haque pays par un som-

met et 
haque frontière 
ommune par une arête entre les deux pays 
on
ernés,

on obtient un graphe. Le problème du 
oloriage des 
artes se transforme en un

problème du 
oloriage des sommets.

Chimie molé
ulaire

À l'époque de la Révolution française, on dessinait déjà des diagrammes res-

semblant à des graphes pour dé
rire les molé
ules.

Mais 
e n'est que dans les années 1850, sous l'in�uen
e de savants 
omme

Auguste Kekule et Crum Brown, quand on eut 
ompris un peu mieux la théorie

des liaisons 
himiques (théorie de la valen
e), que les graphes furent utilisés

plus largement.

Cependant, de telles représentations ignorent en général la stru
ture spatiale

de la molé
ule.

H

H C H

H

Par exemple, la molé
ule de méthane CH

4

, représentée

par le diagramme 
i-
ontre, n'a pas une stru
ture pla-

naire. En e�et, la stéréo
himie nous enseigne que l'atome

de 
arbone C est situé au 
entre d'un tétraèdre régulier

dont les quatre sommets sont les atomes d'hydrogène H.

Néanmoins 
e mode de représentation s'est avéré utile pour illustrer 
omment

les di�érents atomes sont reliés entre eux et pour obtenir ainsi des informations

sur le 
omportement 
himique de telle ou telle molé
ule.

La 
onnaissan
e de la formule 
himique d'une molé
ule ne permet pas toujours

de déterminer 
omplètement toutes ses propriétés 
himiques. Cela est dû à

l'existen
e d'isomères, 
'est-à-dire à des molé
ules ayant les mêmes atomes et

les mêmes liaisons, mais arrangés di�éremment.

Voi
i, par exemple, deux isomères de C

5

H

12

:

H H H H H

H C C C C C H

H H H H H

pentane

H

H C H

H H H

H C C C C H

H H H H

isopentane
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Rappelons qu'un atome d'hydrogène H n'a qu'un éle
tron et qu'il ne peut se

lier dans une molé
ule qu'à un seul atome. En revan
he, l'atome de 
arbone C

a quatre éle
trons disponibles dans sa 
ou
he périphérique et peut se lier ave


au plus quatre autres atomes.

1.3 La �gure 
i-dessous représente une molé
ule de méthane CH

4

ainsi qu'une

molé
ule de propane C

3

H

8

.

H

H C H

H

méthane

H H H

H C C C H

H H H

propane

1) En 
onsidérant 
es diagrammes 
omme des graphes, que peut-on dire des

sommets 
orrespondant aux atomes de 
arbone et aux atomes d'hydro-

gène ?

2) Représenter les graphes 
orrespondant aux deux isomères de C

4

H

10

.

3) Montrer que C

5

H

12

a un troisième isomère.

Autres exemples d'appli
ation

L'intérêt de la théorie des graphes réside dans sa 
apa
ité à pouvoir modéli-

ser par des diagrammes géométriques qu'on appelle graphes, des relations et

arrangements entre divers éléments d'une situation donnée.

L'étude des propriétés de 
es diverses 
on�gurations permet de répondre à


ertaines questions se rapportant à la situation initiale.

Exemple

Supposons qu'à la rentrée vous vous joignez à une nouvelle 
lasse. Vous obser-

vez que 
ertains élèves se 
onnaissent et d'autres pas. Une manière synthétique

de présenter 
ette situation est de la modéliser ainsi :

� 
haque élève est repré-

senté par un point ;

� deux élèves qui se


onnaissent sont reliés

par un segment.

PierreBob

Ryan

CaroleBrunoAnna

Diane

Éri


1.4 John est ami ave
 Johanna, Jean et Jeanne ; Joe l'est ave
 Jeanne et Johanna ;

Jean et Johanna s'aiment l'un l'autre.

Dessiner un digraphe (
'est-à-dire un graphe dont les arêtes sont orientées)

illustrant les relations entre John, Johanna, Jean, Jeanne et Joe.
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1.5 Dessiner le graphe 
orrespondant à l'arbre généalogique suivant :

John

Joe

Jenny

Jean

Marie

Jeanne Jules

Julie Julia

1.6 Les serpents mangent les grenouilles et les oiseaux mangent des araignées ;

les oiseaux et les araignées mangent tous deux des inse
tes. Les grenouilles

mangent des es
argots, des araignées et des inse
tes.

Dessiner un digraphe représentant le 
omportement alimentaire de 
es préda-

teurs.

1.7 Voi
i le plan d'un logement :

salon

bureau

séjour

entrée

billard 
uisine

salle à manger

S
hématiser par un graphe le plan de 
ir
ulation de 
e logement.
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Réponses

1.1

P Q R

S T

5 sommets 7 arêtes

sommet P Q R S T

degré 2 4 2 3 3

1.2 A! C! B! D! E! A ou A! E! D! B! C! A

Le se
ond itinéraire 
orrespond au premier itinéraire en sens inverse.

1.3 1) Les sommets 
orrespondant aux atomes de 
arbone sont de degré 4 et


eux 
orrespondant aux atomes d'hydrogène de degré 1.

2)

H H H H

H C C C C H

H H H H

butane

H

H C H

H H

H C C C H

H H H

isobutane

3)

H

H C H

H H

H C C C H

H H

H C H

H

neopentane

1.4

John

Jean

JohannaJoe

Jeanne
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1.5

John

Joe

Jenny

Jean

Marie

Jeanne Jules

Julie Julia

1.6

Grenouilles

Es
argots

Araignées

Oiseaux

Inse
tes

Serpents

1.7

salon

bureau

séjour

entrée

billard

uisine

salle à manger
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2 Con
epts élémentaires

Dé�nitions

Un graphe G = (V ; E) est la donnée :

� d'un ensemble �ni V dont les éléments sont appelés les sommets (verti
es en

anglais) de G ;

� d'une famille E de paires non ordonnées de sommets de V (non né
essairement

distin
ts) appelés les arêtes (edges en anglais) de G.

On utilise le terme � famille � pour signi�er une 
olle
tion d'éléments dont 
er-

tains peuvent apparaître plusieurs fois. Par exemple, fa ; b ; 
g est un ensemble,

mais fa ; a ; b ; 
 ; a ; 
g ne l'est pas ; 
'est une famille dans le sens 
i-dessus.

Exemples

1)

v

u

w

z

V = fu ; v ;w ; zg

E = fuv ; uw ; vw ;wzg

2)

v

u

w

z

V = fu ; v ;w ; zg

E = fuv ; vv ; vv ; vw ; vw ; vw ; uw ; uw ;wzg

2.1 É
rire l'ensemble des sommets et la famille des arêtes des graphes suivants :

1)

Perth

Sydney

Brisbane Melbourne

2)

x

y

z

v

u

w

3)

1

2

3

4

5 6

2.2 Dessiner les graphes suivants :

1) E = f�




;




� ;




4 ;�4gV = f� ;




;� ;4g

2) E = ?V = fA ;B ; C ;Dg

3) E = f12 ; 22 ; 23 ; 34 ; 35 ; 67 ; 68 ; 78gV = f1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8g

Deux sommets u et v d'un graphe sont dits voisins si uv est une arête de G.

Un graphe est dit simple s'il ne 
ontient ni arêtes multiples reliant deux sommets,

ni bou
les.

Ainsi, le graphe de l'exemple 1) est simple, alors que 
elui de l'exemple 2) ne l'est

pas.

On appelle ordre d'un graphe G = (V ; E) le nombre de ses sommets ; on le note

jVj .
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2.3 On 
onsidère les graphes suivants :

1)

5

3

1

4

6

2

2)

x

y

w

v z

3)

u

vw z

4)

A B

DC

5)

5

8

1 2 3 4 6 7

Parmi 
es graphes, lesquels

1) 
ontiennent des arêtes multiples ?

2) 
ontiennent une bou
le ?

3) sont simples ?

Un sous-graphe G

0

d'un graphe G est un graphe tel que 
haque sommet et


haque arête de G

0

soient un sommet et une arête de G.

Exemple

G

0

G

?

G

??

G

0

est un sous-graphe de G

?

, mais pas de G

??

.

2.4 Soit G le graphe étiqueté suivant :

u v

w

z

Lesquels de 
es graphes sont des sous-graphes de G ?

1)

u v

z

2)

u v w

3)

u z v

4)

u z

wv

5)

u v

zw
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Degré des sommets

Soit G = (V ; E) un graphe. Le degré d'un sommet x 2 V est le nombre d'arêtes

de G 
ontenant x ; on le note deg(x).

On 
onvient que, lorsqu'il y a une bou
le, elle 
ontribue pour 2 (plut�t que 1) au

degré de x.

Un sommet de degré 0 est dit isolé et un sommet de degré 1 une extrémité du

graphe.

Soit G = (V ; E) un graphe d'ordre n. À 
haque sommet x

k

, on peut faire 
orres-

pondre son degré d

k

. Quitte à renuméroter les sommets de G, on peut toujours les

ordonner de façon à 
e que la suite des degrés 
orrespondants soit dans un ordre

dé
roissant. La suite (d

1

; : : : ; d

n

) ordonnée par ordre dé
roissant s'appelle la liste

des degrés du graphe G. On dit alors que le graphe G est de type (d

1

; : : : ; d

n

).

Exemples

1) 2) 3)

v

u

w

z

Dans les exemples 1) et 2) 
i-dessus, 
ha
un des graphes a deux sommets de

degré 1 et trois sommets de degrés 2. Dans l'exemple 3), il y a un sommet de

degré 1, un de degré 3, un de degré 6 et un de degré 8.

La liste des degrés des deux premiers graphes est don
 (2; 2; 2; 1; 1) et 
elle du

troisième graphe est (8; 6; 3; 1).

2.5 Pour 
ha
un des graphes de l'exer
i
e 2.3, donner

1) les degrés de tous les sommets ;

2) la liste des degrés.

Lemme des poignées de mains

La somme des degrés de tous les sommets d'un graphe G = (V ; E) est égale à

deux fois le nombre de ses arêtes :

X

x2V

deg(x) = 2 jEj

Preuve Chaque arête du graphe in
rémente de deux la somme des degrés.
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2.6 É
rire la liste des degrés de 
ha
un des graphes suivants :

1) 2) 3)

Véri�er le lemme des poignées de mains pour 
ha
un de 
es graphes.

2.7 Est-il possible de relier 15 ordinateurs de sorte que 
haque appareil soit relié ave


exa
tement trois autres ?

Indi
ation : appliquer le lemme des poignées de mains.

2.8 Montrer que dans un graphe, le nombre de sommets de degré impair est pair.

Indi
ation : Soit G = (V ;E) un graphe. Notons P l'ensemble des sommets de degré pair et I

l'ensemble des sommets de degré impair. Alors

X

x2V

deg(x) =

X

x2P

deg(x) +

X

x2I

deg(x).

2.9 1) Construire un graphe tel que sa liste des degrés soit (4; 3; 2; 1).

2) Est-il possible de 
onstruire un graphe tel que sa liste des degrés soit (5; 4; 3; 2; 1) ?

Isomorphisme de graphes

2.10 Dans 
ha
une des lignes suivantes, deux des graphes sont identiques et le troisième

est di�érent. Identi�er l'intrus.

1)

v

u

zw

u v

zw

u v

zw

x

2)

u

vw z

u

wv z

w

vz u

3) u v

wz

z w

vu

z w

vu
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Considérons les deux graphes suivants :

A B C

eau

éle
tri
ité

gaz

A

eau

C

B éle
tri
ité

gaz

Ces deux graphes ne sont pas identiques, puisque le gaz et l'eau sont reliés dans

le se
ond, mais pas dans le premier. Pourtant, ils ont l'air très semblables : en

permutant eau ave
 la lettre B, on passe d'un graphe à l'autre.

De la même manière, dans les graphes suivants :

u v

w

z

G

u

v

wz

H

on peut re-étiqueter les sommets de G pour obtenir le graphe H.

G �! H

u 7�! z

v 7�! w

w 7�! v

z 7�! u

Notons que

� les deux arêtes uv dans G 
orrespondent aux deux arêtes zw dans H ;

� l'arête uw dans G 
orrespond à l'arête zv dans H ;

� la bou
le en w dans G 
orrespond à la bou
le en v dans H ;

et
.

Deux graphes étiquetés G et H sont dits isomorphes

1

s'il existe une bije
tion

entre les sommets de G et 
eux de H de telle sorte que le nombre d'arêtes joignant


haque paire de sommets de G soit égal au nombre d'arêtes joignant les paires


orrespondantes de sommets de H.

2.11 En expli
itant une bije
tion entre les sommets, montrer que les graphes suivants

sont isomorphes.

a

b




d

r s

t

u

1. Ce terme est 
onstruit à partir de deux mots gre
s : Òso
 et morf  qui signi�ent � même �

et � forme �. Il veut don
 dire avoir la même forme.
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2.12 En expli
itant une bije
tion entre les sommets, montrer que les graphes suivants

sont isomorphes.

1 2

3

45

6

A

BC

D

E F

2.13 En étiquetant 
onvenablement les sommets, montrer que les graphes suivants sont

isomorphes.

2.14 Expliquer pourquoi les deux graphes ne sont pas isomorphes.

2.15 Parmi les quatre graphes étiquetés suivants, il y en a deux qui sont identiques,

un qui est isomorphe aux deux pré
édents et le dernier qui n'est pas isomorphe à

au
un des autres. Identi�ez-les.

1 2

3

45

6

1

2

34

5 6

1

2

3

4

5

6

1 2

3

45

6
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Réponses

2.1 1) Posons B = Brisbane, M = Melbourne, P = Perth et S = Sydney.

V = fB ;M ;P ; Sg E = fBM ;BP ;BS ;MP ;MS ; PSg

2) V = fu ; v ;w ; x ; y ; zg E = fuv ; uw ; vw ; vw ; xyg

3) V = f1 ; 2 ; 3 ; 4 ; 5 ; 6g E = f12 ; 22 ; 23 ; 24 ; 24 ; 45 ; 46g

2.2 1) b
�

b



b

�

b

4

2) b
A

b
B

b

C

b

D

3)

b

1

b

2

b
3

b
4

b

5

b

6

b

7

b
8

2.3 1) graphes 1) et 5) 2) graphe 3) 3) graphes 2) et 4)

2.4 graphes 1), 2) et 4)

2.5 1) deg(1) = deg(2) = deg(5) = deg(6) = 1, deg(3) = deg(4) = 4

(4; 4; 1; 1; 1; 1)

2) deg(v) = deg(w) = deg(x) = deg(y) = deg(z) = 4

(4; 4; 4; 4; 4)

3) deg(u) = deg(v) = 3, deg(w) = deg(z) = 1

(3; 3; 1; 1)

4) deg(A) = deg(B) = deg(C) = deg(D) = 0

(0; 0; 0; 0)

5) deg(1) = deg(5) = 1, deg(2) = deg(4) = deg(6) = deg(7) = deg(8) = 2,

deg(3) = 4 (4; 2; 2; 2; 2; 2; 1; 1)

2.6 1) (4; 4; 2; 1; 1; 1; 1; 1; 1) 4 + 4 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 2 � 8

2) (4; 4; 4; 4; 4) 4 + 4 + 4 + 4 + 4 = 2 � 10

3) (5; 5; 4; 4; 3; 1; 0) 5 + 5 + 4 + 4 + 3 + 1 + 0 = 2 � 11

2.7 non

2.10 1) 3

e

graphe 2) 2

e

graphe 3) 3

e

graphe

2.11 a 7�! r

b 7�! t


 7�! u

d 7�! s

2.12 1 7�! A

2 7�! B

3 7�! C

4 7�! D

5 7�! E

6 7�! F

2.15 Les premier et troisième graphes sont identiques ; le deuxième graphe n'est pas

isomorphe aux autres.
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3 Chemins & Arbres

Chemins

Chaînes

Dans un graphe G, une 
haîne allant de a à b est une liste ordonnée

x

0

x

1

: : : x

n�1

x

n

de n + 1 sommets de G où a = x

0

, b = x

n

et où 
haque

paire x

i�1

x

i

(1 6 i 6 n) est une arête de G.

Le nombre n des arêtes qui 
omposent la 
haîne est sa longueur.

Remarque On ne demande pas que dans une 
haîne tous les sommets ou

toutes les arêtes soient di�érents.

u

v w

y

z

x

Dans le graphe 
i-dessus, u v w x y w v z z y est une 
haîne de longueur 9 qui va

du sommet u au sommet y. L'arête v w est in
luse deux fois, de même que les

sommets v, w, y et z.

Si a = b, on parle d'une 
haîne fermée, sinon d'une 
haîne ouverte.

Chemins

Un 
hemin est une 
haîne telle que 
haque arête de 
elle-
i soit par
ourue une

seule fois.

Un 
hemin simple est un 
hemin dont 
haque sommet est traversé une seule

fois (ex
epté peut-être le premier et le dernier).

3.1 Considérons le graphe suivant :

u

v

x

y

z

a

b




de

f

Les 
haînes a e f a d et a b 
 d e sont-elles des 
hemins ? des 
hemins simples ?
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Remarque Comme l'illustre l'exer
i
e 3.1, un 
hemin peut passer plusieurs

fois par le même sommet.

Il est fa
ile de montrer que tout 
hemin allant d'un sommet à un autre peut

être � simpli�é � en un 
hemin simple. Pour 
ela, il su�t de supprimer les

détours.

Connexité

Un graphe est 
onnexe si toute paire de sommets peut être reliée par un


hemin.

3.2 Les graphes suivants sont-ils 
onnexes ?

1) 2)

Si un graphe G n'est pas 
onnexe, il se dé
ompose en réunion de sous-graphes


onnexes, appelés 
omposantes 
onnexes de G.

Le se
ond graphe de l'exer
i
e 3.2 admet, par exemple, deux 
omposantes


onnexes.

Théorème Tout graphe 
onnexe à n sommets possède au moins n�1 arêtes.

Démontrons le résultat par ré
urren
e sur le nombre de sommets n.

Pour n = 1 ou n = 2, le résultat est évident.

Supposons à présent n > 3 et le résultat vrai pour les graphes d'ordre 6 n�1.

Soit G = (V ; E) un graphe 
onnexe d'ordre n. Distinguons deux 
as.

1) Supposons qu'il existe un sommet de degré 1.

Soit G

0

le sous-graphe de G obtenu par suppression d'un sommet de

degré 1 et de l'arête adja
ente à 
e sommet. Alors G

0

est un graphe


onnexe ave
 n � 1 sommets. Vu l'hypothèse de ré
urren
e, il possède

au moins (n � 1) � 1 arêtes. Il en résulte que G, qui possède une arête

supplémentaire, a au moins n� 1 arêtes.

2) Supposons qu'il n'existe pas de sommet de degré 1.

Vu la 
onnexité de G, il ne peut pas y avoir de sommet isolé, de sorte

que tous les sommets sont de degré > 2.

Le lemme des poignées de mains implique 2 jEj =

X

x2V

deg(x) > 2n, d'où

l'on 
on
lut que le nombre d'arêtes jEj > n > n� 1.
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Cy
les

Un 
y
le est un 
hemin simple fermé.

Un graphe ne 
ontenant pas de 
y
le est a
y
lique.

3.3 Déterminer les 
y
les de longueur 1, 2 et 3 dans le graphe suivant :

e

2

e

3

e

4

e

5

e

1

Proposition Si dans un graphe G tout sommet est de degré > 2, alors G

possède au moins un 
y
le.

Preuve La preuve utilise un algorithme de marquage. Initialement, tous les

sommets sont non marqués. Un sommet x

1

est arbitrairement marqué.

L'algorithme 
onstruit une séquen
e x

1

; x

2

; : : : ; x

k

de sommets marqués en


hoisissant arbitrairement pour x

i+1

un sommet non marqué adja
ent à x

i

.

L'algorithme s'arrête lorsque x

k

ne possède plus de voisin non marqué. Puisque


e sommet est degré > 2, il possède, outre x

k�1

, un autre voisin marqué x

j

.

Alors x

k

x

j

x

j+1

: : : x

k�1

x

k

est un 
y
le.

Corollaire Un graphe a
y
lique possède au moins un sommet de degré 6 1.

Théorème Tout graphe a
y
lique à n sommets possède au plus n�1 arêtes.

Preuve Démontrons le résultat par ré
urren
e sur le nombre de sommets n.

Pour n = 1 ou n = 2, le résultat est évident.

Supposons à présent n > 3 et le résultat vrai pour les graphes d'ordre 6 n�1.

Soit G = (V ; E) un graphe a
y
lique d'ordre n. D'après le 
orollaire, il existe

un sommet x de degré 6 1. Soit G

0

le sous-graphe de G obtenu par suppression

du sommet x et de l'éventuelle arête adja
ente à 
e sommet. Alors G

0

est un

graphe a
y
lique ave
 n� 1 sommets. Vu l'hypothèse de ré
urren
e, il possède

au plus (n� 1)� 1 arêtes. Il en résulte que G, qui possède une éventuelle arête

supplémentaire, a au plus n� 1 arêtes.

Arbres

Un arbre est un graphe 
onnexe a
y
lique.

3.4 Quel est le nombre d'arêtes d'un arbre à n sommets ?
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Remarque Un arbre est né
essairement simple, puisqu'il est a
y
lique.

Exemple Les trois graphes suivants sont des arbres :

1) 2) 3)

La réunion ensembliste des graphes 1), 2) et 3) est un graphe qui, bien que

n'admettant pas de 
y
les, n'est pas un arbre, 
ar il n'est pas 
onnexe. On

l'appelle une forêt.

Remarque Un sous-graphe d'un arbre peut être une forêt ; un sous-graphe


onnexe d'un arbre T est un sous-arbre de T.

Propriétés & 
ara
térisations des arbres

La 
onnexité d'un graphe implique que deux sommets quel
onques sont tou-

jours reliés par au moins un 
hemin.

Le fait qu'il n'y ait qu'un seul 
hemin entre deux sommets distin
ts quel-


onques 
ara
térise les arbres, 
omme l'énon
e le théorème suivant.

Théorème Un graphe simple est un arbre si et seulement si deux sommets

distin
ts quel
onques peuvent être reliés par un 
hemin unique.

Preuve

1) Soit T un arbre. Supposons � par l'absurde � qu'il existe deux sommets

distin
ts u et v qui puissent être reliés par deux 
hemins distin
ts.

u

v

Leur réunion va 
ontenir un 
y
le (et probablement d'autres arêtes), 
e

qui est en 
ontradi
tion ave
 le fait que T est a
y
lique.

2) Ré
iproquement, supposons que deux sommets distin
ts quel
onques d'un

graphe G soient toujours reliés par un 
hemin unique. Alors G ne peut

pas 
ontenir de 
y
le, 
ar deux sommets distin
ts d'un 
y
le sont toujours

reliés par deux 
hemins distin
ts. Don
 G est un arbre.
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Théorème Soit G un graphe à n sommets. Alors les propriétés suivantes

sont équivalentes et peuvent être prises 
omme la dé�nition d'un arbre.

1) G est 
onnexe et a
y
lique.

2) G est un graphe 
onnexe à n� 1 arêtes.

3) G est 
onnexe et la suppression de toute arête le dé
onne
te.

4) G est un graphe a
y
lique à n� 1 arêtes.

5) G est a
y
lique et l'ajout de toute arête le rend 
y
lique.

Preuve

1)) 2) G étant 
onnexe et a
y
lique, il possède exa
tement n� 1 arêtes.

2)) 3) Pour être 
onnexe, un graphe à n sommets doit posséder au moins

n� 1 arêtes. En supprimant une arête de G, il n'en reste plus que n� 2.

3)) 4) Si, par l'absurde, G possédait un 
y
lique, la suppression d'une arête

ne saurait le dé
onne
ter ; par suite, G est a
y
lique. Puisqu'il est égale-

ment 
onnexe, il possède don
 exa
tement n� 1 arêtes.

4)) 5) Pour être a
y
lique, un graphe à n sommets doit posséder au plus

n� 1 arêtes. L'ajout d'une arête à G donne un graphe à n arêtes.

5)) 1) Considérons deux sommets x et y de G.

� Si l'arête x y existe, alors 
'est un 
hemin de x à y.

� Sinon, ajoutons l'arête x y à G : nous 
réons alors un 
y
le de la forme

x a : : : w y x. Ce
i montre l'existen
e du 
hemin x a : : : w y entre x et y

dans G.

G est don
 bien un graphe 
onnexe.

3.5 Montrer que les 
onditions suivantes sont équivalentes :

1) G est 
onnexe et a un seul 
y
le.

2) G est 
onnexe et le nombre de sommets est égal au nombre d'arêtes.

3) Il existe une arête e de G telle que G� e est un arbre.

3.6 Prouver qu'un graphe de n sommets et n� 1 arêtes qui a au moins un 
y
le a

plus d'une 
omposante 
onnexe.

Connexion minimale

Arbres de re
ouvrement d'un graphe

On appelle arbre de re
ouvrement d'un graphe G un sous-graphe de G qui


ontient tous les sommets de G et qui est un arbre.

En général, 
omme on le voit 
i-dessous, un graphe peut avoir plusieurs arbres

de re
ouvrement.

v w

x

y

z

v w

x

y

z

v w

x

y

z

v w

x

y

z
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Remarque Si le graphe n'est pas 
onnexe, il n'existe pas d'arbre de re
ou-

vrement, puisqu'un arbre est 
onnexe.

Théorème Tout graphe 
onnexe 
ontient un arbre de re
ouvrement.

Preuve Soit G un graphe 
onnexe.

Considérons l'ensemble 	 de tous les sous-graphes 
onnexes de G 
ontenant

tous les sommets de G. L'ensemble 	 est non vide, vu que G 2 	.

Soit T l'un des éléments de 	 possédant un nombre minimum d'arêtes.

T est a
y
lique : sinon, T 
ontiendrait un 
y
le et la suppression d'une arête

quel
onque de 
e 
y
le donnerait un sous-graphe appartenant à 	 ayant une

arête de moins que T, 
e qui 
ontredirait le 
hoix de T.

Vu que T est 
onnexe et a
y
lique, il 
onstitue un arbre de re
ouvrement de G.

3.7 Trouver un arbre de re
ouvrement du graphe suivant :

v

1

v

2

v

3

v

4

v

5

v

6

3.8 Trouver un arbre de re
ouvrement du graphe suivant :

v

10

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

3.9 Dessiner les 8 arbres de re
ouvrement du graphe :

a

b




d

Le problème de la 
onnexion minimale

Supposons que di�érents objets (villes, 
entres de distribution, prises de 
ou-

rant éle
trique, et
.) doivent être reliés entre eux de manière minimum (
ela
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peut être en distan
e, en temps, en 
oût ou selon d'autres 
ritères), de sorte

qu'il existe toujours un � 
hemin � possible entre deux quel
onques de 
es

objets.

Il est fa
ile de traduire 
ette situation par un graphe G :

� L'ensemble des sommets de G est l'ensemble des objets. Une arête de G


orrespond à une liaison dire
te possible entre deux sommets.

� À 
haque arête on fait 
orrespondre un nombre positif, appelé poids, qui

peut représenter une distan
e, un temps, un 
oût, et
.

Nous obtenons ainsi 
e que l'on appelle un graphe pondéré.

Le problème 
onsiste alors à trouver un arbre de re
ouvrement de G de poids

minimum.

Exemple Six ordinateurs C

1

;C

2

; : : : ;C

6

doivent être reliés par un réseau de

transmission à �bre optique. Le 
oût (unité = 10 000 fr.) de 
haque liaison

possible est donné par le tableau suivant :

C

1

C

2

C

3

C

4

C

5

C

6

C

1

� 10 14 18 13 8

C

2

10 � 3 16 5 12

C

3

14 3 � 7 17 11

C

4

18 16 7 � 9 4

C

5

13 5 17 9 � 6

C

6

8 12 11 4 6 �

Il faut trouver le réseau le moins 
her possible tel que toute paire d'ordinateurs

puisse 
ommuniquer, que 
e soit dire
tement ou à travers d'autres ordinateurs.

Le graphe pondéré par les 
oûts est le suivant :

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

Algorithme de Kruskal

Cet algorithme est dû au mathémati
ien t
hèque Joseph B. Kruskal qui l'a

utilisé le premier en 1956.
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Soit G = (V ; E) un graphe 
onnexe et pondéré.

1) Trier les arêtes de E par ordre 
roissant de poids : e

1

; : : : ; e

jEj

.

2) Poser F = ?.

3) Pour tout i allant de 1 à n, ajouter l'arête e

i

à F, pour autant que le

graphe (V ; F) qui en résulte demeure a
y
lique.

Par 
onstru
tion et en vertu de la propriété 5) du théorème de la page 3.4, on

obtient ainsi un arbre de re
ouvrement de poids minimum.

Exemple (suite) Appliquons l'algorithme de Kruskal aux six ordinateurs

reliés par un réseau de transmission à �bre optique.

Ordonnons les arêtes du graphe par ordre 
roissant de poids :

3; 4; 5; 6; 7; 8; 9; 10; 11; 12; 13; 14; 16; 17; 18.

L'appli
ation de l'algorithme donne F = f3 ; 4 ; 5 ; 6 ; 8g.

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

En e�et, l'ajout de l'arête de poids 7 
réerait le 
y
le C

2

C

3

C

4

C

6

C

5

C

2

. À

partir de l'ajout de l'arête de poids 8, tous les sommets sont reliés, 
'est-à-dire

que le graphe est 
onnexe, de sorte qu'il 
onstitue un arbre et que l'ajout de

toute arête supplémentaire 
rée un 
y
le.

Le poids de l'arbre est 3 + 4 + 5 + 6 + 8 = 26 : le réseau 
her
hé peut être


onstruit, selon l'arbre trouvé, au prix de 260 000 fr.

Algorithme de Prim

Bien que l'algorithme de Kruskal puisse être fa
ilement appliqué � à la main �

quand le graphe est petit, il n'est pas parti
ulièrement approprié à une implé-

mentation e�
a
e dans un ordinateur. En e�et, il faut arranger les arêtes dans

l'ordre de poids 
roissant et surtout 
ontr�ler qu'au
un 
y
le n'a été 
réé.

L'algorithme de Prim, que l'on doit à l'informati
ien Robert C. Prim en 1957,

permet de surmonter 
es di�
ultés.
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Soit G = (V ; E) un graphe 
onnexe et pondéré.

1) Marquer arbitrairement un sommet.

2) Poser F = ?.

3) Tant qu'il existe un sommet non marqué, 
hoisir une arête de poids

minimum joignant un sommet marqué à un sommet non marqué ; ajouter


ette arête à F et marquer 
e nouveau sommet.

Par 
onstru
tion et en vertu de la propriété 3) du théorème de la page 3.4, on

obtient ainsi un arbre de re
ouvrement de poids minimum.

Exemple (�n) Appliquons l'algorithme de Prim aux six ordinateurs reliés

par un réseau de transmission à �bre optique, en marquant initialement le

sommet C

1

:

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

C

1

C

2

C

3

C

4

C

5

C

6

1

0

1

4

1

8

1

3

8

3

1

6

5

12

7

17

1

1

9

4

6

3.10 Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de re
ou-

vrement minimum pour le graphe pondéré suivant :

v

7

v

1

v

2

v

3

v

4

v

5

v

6

8

9

1

2

11

10

3

4

7

5

6
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3.11 Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de re
ou-

vrement minimum pour le graphe pondéré suivant :

v

8

v

9

v

1

v

2

v

3

v

4

v

5

v

6

v

7

1

12

11

15

10

2

4

13

8

6

3

7

14 9

5

3.12 Le tableau suivant donne les distan
es (en 
entaines de milles) entre six villes

européennes.

Berlin Londres Madrid Mos
ou Paris Rome

Berlin 0 7 15 11 7 10

Londres 7 0 11 18 3 12

Madrid 15 11 0 27 8 13

Mos
ou 11 18 27 0 18 20

Paris 7 3 8 18 0 9

Rome 10 12 13 20 9 0

Trouver un arbre de re
ouvrement minimum reliant 
ha
une de 
es villes :

1) par l'algorithme de Kruskal ;

2) par l'algorithme de Prim.

3.13 Déterminer tous les graphes de re
ouvrement minimaux du graphe suivant :

4

5

5

1

2

3

4

2

3

2

4

1
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Réponses

3.1 a e f a d n'est pas un 
hemin allant de v à z.

a b 
 d e est un 
hemin allant de v à u qui n'est pas simple.

3.2 1) oui 2) non

3.3 e

1

est le seul 
y
le de longueur 1.

e

2

e

3

est le seul 
y
le de longueur 2.

e

2

e

4

e

5

et e

3

e

4

e

5

sont les seuls 
y
les de longueur 3.

Remarquons que e

3

e

2

e

1

n'est pas un 
y
le puisqu'un sommet est répété.

3.4 n� 1

3.7

v

1

v

2

v

3

v

4

v

5

v

6

3.8

v

10

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

3.9

a

b




d

a

b




d

a

b




d

a

b




d

a

b




d

a

b




d

a

b




d

a

b




d

3.10

v

7

v

1

v

2

v

3

v

4

v

5

v

6

8

9

1

2

4

5
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3.11

v

8

v

9

v

1

v

2

v

3

v

4

v

5

v

6

v

7

1

10

2

4

6

3

7

5

3.12

Londres

Paris

Berlin

Rome

Madrid

Mos
ou

3

8

9

7

11

3.13

4

1

2

3

2

2

1

4

1

2

2

3

2

1
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4 Graphes eulériens

Problème de l'explorateur

Un explorateur souhaite explorer toutes les routes entre un 
ertain nombre de

villes. Peut-on trouver un itinéraire qui passe par 
haque route une seule fois ?

Ce problème se traduit aisément dans le langage des graphes : peut-on trouver

un 
hemin passant une et une seule fois par 
haque arête d'un graphe ?

Étant donné que 
ette question est étroitement liée au problème des ponts de

Könisberg et que Euler y est historiquement asso
ié, on pose les dé�nitions

suivantes.

Un 
hemin d'un graphe G est appelé 
hemin eulérien s'il passe une et une

seule fois par 
haque arête du graphe.

Un graphe G est un graphe eulérien s'il admet un 
hemin eulérien fermé.

Un graphe G est semi-eulérien s'il n'est pas eulérien et s'il admet un 
hemin

eulérien ouvert.

Remarque Un graphe eulérien ou semi-eulérien est né
essairement 
onnexe.

Exemples Les trois graphes 
i-dessous sont respe
tivement eulérien, semi-

eulérien et non eulérien.

1) 2) 3)

Théorème Un graphe est eulérien si et seulement si il est 
onnexe et tous

ses sommets sont de degré pair.

Preuve Supposons qu'un graphe G soit eulérien. Il existe alors un 
hemin

fermé 
 par
ourant une et une seule fois 
haque arête.

Le graphe G est don
 
onnexe, puisque 
 relie tous les sommets entre eux.

Considérons un sommet x. Lors du par
ours du 
y
le, à 
haque fois que nous

passons par lui, nous y arrivons et nous en repartons par 2 arêtes non en
ore

par
ourues. Le sommet x est don
 de degré pair.

Ré
iproquement, 
onsidérons un graphe G 
onnexe dont tous les sommets sont

de degré pair. Nous allons montrer par ré
urren
e sur le nombre d'arêtes que

G est alors eulérien.

Si G se réduit à un unique sommet isolé, il est évidemment eulérien.
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Sinon tous les sommets de G sont de degré > 2. La proposition de la page 3.3

implique qu'il existe un 
y
le ' sur G.

Considérons le graphe partiel H 
onstitué des arêtes en dehors du 
y
le '. Les

sommets de H sont également de degré pair, le 
y
le 
ontenant un nombre pair

d'arêtes in
identes pour 
haque sommet. Par hypothèse de ré
urren
e, 
haque


omposante 
onnexe H

i

de H est un graphe eulérien et admet don
 un 
hemin

eulérien fermé '

i

.

'

'

1

'

2

'

3

'

4

Le 
y
le ', représenté en trait tillé, dé�nit

4 
omposantes 
onnexes pour le graphe H,

dont 2 sommets isolés pour lesquels leur 
y
le

eulérien est sans arête.

Les �è
hes symbolisent l'opération de fusion

des 2 
y
les non vides ave
 '.

Pour re
onstruire un 
hemin eulérien fermé sur G, il nous su�t de fusionner

le 
y
le ' ave
 les di�érents 
y
les '

i

. Pour 
ela, on par
ourt le 
y
le ' depuis

un sommet arbitraire ; lorsque l'on ren
ontre pour la première fois un sommet

appartenant à H

i

, on lui substitue le 
hemin eulérien fermé '

i

. Le 
hemin

obtenu est un 
hemin eulérien fermé pour G, le 
y
le ' et les 
hemins '

i

formant une partition des arêtes.

Corollaire Un graphe est semi-eulérien si et seulement si il est 
onnexe et

s'il a exa
tement deux sommets de degré impair.

Dans 
e 
as, le 
hemin eulérien ouvert joint 
es deux sommets.

4.1 Justi�er que les graphes des exemples de la page pré
édente sont respe
tive-

ment eulérien, semi-eulérien et non eulérien.

4.2 Parmi les graphes suivants, déterminer 
eux qui sont eulériens ou semi-eulériens

et pré
iser un 
hemin 
orrespondant.

1)




a

d

b

e

2)

d

a

b




3)

u v

w

x

y

z
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4.3 Déterminer si les graphes suivants sont eulériens, semi-eulériens ou ni l'un ni

l'autre.

1) 2) 3)

4.4 Déterminer si les graphes suivants sont eulériens, semi-eulériens ou ni l'un ni

l'autre.

1) 2)

3) 4)

4.5 Déterminer si les graphes suivants sont eulériens, semi-eulériens ou ni l'un ni

l'autre.

1) 2) 3)

4) 5) 6)

7) 8) 9)
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4.6 On représente 
i-dessous la ville de Dreamtown ave
 sa rivière et ses trois îles.

Est-il possible de par
ourir 
haque pont une fois et une seule fois lors d'une

balade dans 
ette ville ?

Algorithme de Fleury

Il existe un algorithme pour déterminer les 
hemins eulériens dans un graphe

eulérien. L'idée est de par
ourir le graphe en supprimant toutes les arêtes

traversées, mais en évitant autant que possible de rendre le graphe non 
onnexe.

Une arête a b d'un graphe G est appelée un pont si a b est l'unique 
hemin

entre les sommets a et b.

Dans un graphe eulérien, l'algorithme de Fleury permet toujours d'obtenir

un 
hemin eulérien fermé :

� Commen
er à partir de n'importe quel sommet et par
ourir les arêtes arbi-

trairement en respe
tant les règles suivantes :

� Supprimer les arêtes par
ourues ; au 
as où apparaît un sommet isolé, sup-

primer 
e sommet.

� À 
haque étape, n'utiliser un pont que s'il n'y a pas d'autre alternative.

4.7 Utiliser l'algorithme de Fleury pour trouver un 
hemin eulérien ouvert dans le

graphe suivant :
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4.8 Utiliser l'algorithme de Fleury pour trouver au moins un 
hemin eulérien fermé

dans le graphe suivant :

départ

4.9 Utiliser l'algorithme de Fleury pour trouver au moins un 
hemin eulérien fermé

dans le graphe suivant :

13

14 15

16

9

10

11

12

5

6 7

8

1

2

3

4

4.10 Vous êtes un agent de poli
e et la 
arte des routes de votre se
teur est repré-

sentée 
i-dessous.

Est-il possible de patrouiller sur 
ha
une de 
es routes sans par
ourir au
une

d'elles plus d'une fois ?
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Réponses

4.2 1) semi-eulérien a 
 b d a e b

2) ni eulérien, ni semi-eulérien

3) eulérien u v z u y z x y w x v w u

4.3 1) eulérien 2) semi-eulérien 3) ni eulérien, ni

semi-eulérien

4.4 1) eulérien 2) ni eulérien, ni semi-eulérien

3) eulérien 4) ni eulérien, ni semi-eulérien

4.5 1) semi-eulérien 2) semi-eulérien

3) ni eulérien, ni semi-eulérien 4) eulérien

5) semi-eulérien 6) ni eulérien, ni semi-eulérien

7) semi-eulérien 8) ni eulérien, ni semi-eulérien

9) semi-eulérien

4.6 oui

4.7

a

b




d

e

fg

h

i

j

k l

m

n

o

p

q

4.8

a

b 
 d

e

f

g

h

i

j

k

l

4.9

13

14 15

16

9

10

11

12

5

6 7

8

1

2

3

4

a

b




d

e

f

g

h

i

j

k

l

mn

o

p

q

r

s

t

u

v

w

x

y

z

�

�

4.10 Oui, mais sans revenir au point de départ : graphe semi-eulérien
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5 Graphes hamiltoniens

Problème du voyageur

Au 
hapitre pré
édent, nous avons examiné et résolu le problème de l'existen
e

d'un 
hemin passant une et une seule fois par 
ha
une des arêtes d'un graphe

donné. Nous allons analyser le problème 
orrespondant pour les sommets :

dans un graphe donné, existe-t-il un 
hemin qui passe une et une seule fois par


ha
un de ses sommets ?

Nous retrouvons là la forme élémentaire du problème du voyageur de 
om-

mer
e. De manière surprenante, 
e problème s'avère beau
oup plus di�
ile

que 
elui de l'explorateur.

Vers 1850, le mathémati
ien William Hamilton (1805-1865) a tenté de popu-

lariser, malheureusement sans su

ès 
ommer
ial, un 
asse-tête qu'il a appelé

� the i
osian game �. L'idée de 
e jeu est illustrée dans le graphe 
i-dessous.

Q

N

LJ

X

R

S

TV

W

F

D

CB

G

P

M

K

H

Z

Le graphe modélise l'itinéraire d'un voyage autour de la Terre où 20 villes

doivent être visitées. Partant de l'une des vingt villes, le voyageur doit y revenir

en ayant visité 
haque ville une seule fois. Plus pré
isément, le jeu 
onsiste à

imposer les 
inq premières villes à visiter et à demander au joueur de 
ompléter

l'itinéraire. Par exemple, si l'on 
ommen
e par les villes BCPNM, on peut

remarquer qu'il y a exa
tement deux voyages réalisant les 
onditions imposées :

BCPNM DFKLTS RQZXW VJHGB

BCPNM DFGHX WVJKLT SRQZB

Un 
y
le hamiltonien d'un grapheG est un 
y
le qui 
ontient 
haque sommet

de G.

Un graphe est hamiltonien s'il 
ontient un 
y
le hamiltonien.

Un 
hemin hamiltonien est un 
hemin simple ouvert qui 
ontient 
haque

sommet de G.

Un graphe non hamiltonien est semi-hamiltonien s'il 
ontient un 
hemin

hamiltonien.
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Remarque Ajouter ou enlever des bou
les ou des arêtes multiples ne modi�e

pas le 
ara
tère hamiltonien d'un graphe, puisque l'on peut les ignorer en


her
hant un 
hemin qui visite 
haque sommet.

Exemples Les trois graphes 
i-dessous sont respe
tivement hamiltonien, semi-

hamiltonien et non hamiltonien.

1) 2) 3)

Le graphe 
i-dessous est hamiltonien ; on le voit en 
onsidérant, par exemple,

le 
y
le hamiltonien dessiné en gras :

5.1 Trouver un autre 
ir
uit hamiltonien dans le � i
osian game �.

5.2 Montrer que le graphe 
i-dessous est hamiltonien en exhibant un 
y
le hamil-

tonien.

À première vue, le problème de savoir si un graphe est hamiltonien semble très

pro
he de 
elui de savoir si un graphe est eulérien. On pourrait espérer résoudre


e problème d'une manière aussi satisfaisante que pour les graphes eulériens.

Dans le 
hapitre pré
édent, nous avons formulé un 
ritère pour l'existen
e d'un


hemin eulérien � le degré de 
haque sommet doit être pair � et nous avons

même proposé, lorsque 
ette 
ondition est véri�ée, un algorithme permettant

de 
onstruire le 
hemin 
her
hé.

Malheureusement, la solution du problème 
orrespondant pour un 
y
le hamil-

tonien est beau
oup plus di�
ile. En fait, dans le 
as d'un graphe quel
onque,

il n'y a toujours pas de 
ritères, 
'est-à-dire de 
onditions né
essaires et su�-

santes assurant l'existen
e d'un 
y
le ou d'un 
hemin hamiltonien. Cela reste

l'un des problèmes majeurs non résolus de la théorie des graphes.
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Cependant, nous possédons des résultats partiels de deux types. Les uns donnent

des 
onditions né
essaires, 
'est-à-dire des 
onditions que tout graphe doit sa-

tisfaire pour être hamiltonien ; les autres 
onstituent des 
onditions su�santes,


'est-à-dire des 
onditions qui assurent qu'un graphe est hamiltonien.

Conditions su�santes pour qu'un graphe soit hamiltonien

Un graphe est 
omplet lorsque deux sommets quel
onques sont reliés par

exa
tement une arête. Le graphe 
omplet d'ordre n se note K

n

.

Exemples

K

4

K

5

Trouver un 
y
le hamiltonien dans un graphe 
omplet K

n

(n > 2) est très

simple. On peut pro
éder à partir de n'importe quel sommet. Comme toutes

les arêtes possibles sont présentes, on peut toujours passer de n'importe quel

sommet à n'importe quel autre dire
tement. La 
onstru
tion se fait de pro
he

en pro
he.

5.3 1) Quel est le nombre d'arêtes du graphe K

n

?

2) Combien de 
y
les hamiltoniens distin
ts y a-t-il dans K

n

?

La plupart des théorèmes qui expriment une 
ondition su�sante pour qu'un

graphe G soit hamiltonien sont de la forme : si G a � assez � d'arêtes, alors G

est hamiltonien.

Théorème d'Ore (1960)

Soit G un graphe simple ave
 n > 3 sommets. Si deg(u) + deg(v) > n pour

toute paire de sommets u et v non voisins, alors G est hamiltonien.

Preuve Par l'absurde, supposons le théorème faux.

Il existe don
 un graphe non hamiltonien de n sommets satisfaisant la 
ondition

d'Ore : deg(u) + deg(v) > n pour toute paire de sommets u et v non voisins.

En ajoutant des arêtes supplémentaires � 
e qui ne perturbe pas l'inégalité

d'Ore � on peut trouver un nouveau graphe G

?

qui soit � à peine � non

hamiltonien dans le sens suivant : l'adjon
tion d'une nouvelle arête le ren-

drait hamiltonien. Quitte à renuméroter les sommets de G

?

, il s'ensuit que G

?

possède un 
hemin u = v

1

: : : v

n

= v passant par 
haque sommet.
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Puisque G

?

est non hamiltonien, les sommets u et v ne sont pas voisins et

satisfont la 
ondition d'Ore : deg(u) + deg(v) > n.

Désignons par N(u) l'ensemble de tous les sommets voisins de u et par N(v)

l'ensemble de tous les sommets voisins de v.

Si v

i

2 N(u), alors v

i�1

=2 N(v).

En e�et, si 
e n'était pas le 
as, v

1

v

2

: : : v

i�1

v

n

v

n�1

v

n�2

: : : v

i+1

v

i

v

1

serait

un 
y
le hamiltonien dans G

?

, 
omme l'illustre la �gure 
i-dessous.

v

1

= u v

2

v

3

v

i�1

v

i

v

i+1

v

n�2

v

n�1

v

n

= v

Ainsi, pour 
haque sommet voisin de u, il existe un sommet de V � fvg non

voisin de v. Mais alors, deg(v) 6 (n� 1)� deg(u) dans G

?

: en e�et, parmi les

n � 1 sommets de G distin
ts de v, au moins deg(u) d'entre eux ne sont pas

voisins de v.

Il en résulte deg(u) + deg(v) 6 n� 1, 
e qui vient 
ontredire l'inégalité d'Ore.

Corollaire : théorème de Dira
 (1952)

Soit G un graphe simple ave
 n > 3 sommets. Si deg(v) >

n

2

pour 
haque

sommet, alors G est hamiltonien.

5.4 Démontrer le théorème de Dira
 à partir du théorème d'Ore.

Exemples

1) Pour le graphe 
i-
ontre, on a n = 6 et

deg(v) = 3 pour 
haque sommet v. Le théo-

rème de Dira
 s'applique don
 et le graphe

est hamiltonien.

2)

w

Dans le graphe 
i-
ontre, on a n = 5 et

deg(w) = 2. Le théorème de Dira
 ne s'ap-

plique don
 pas.

Par 
ontre, on a deg(u) + deg(v) > 5 pour

toute paire de sommets non voisins. Le théo-

rème d'Ore s'applique, de sorte que le graphe

est hamiltonien.

Cet exemple montre la plus grande généralité

de la 
ondition d'Ore.
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Conditions né
essaires pour qu'un graphe soit hamiltonien

Commençons par énon
er les règles fondées sur le fait que tout 
y
le hamilto-

nien doit 
ontenir exa
tement deux arêtes par sommet.

Proposition Pour qu'un graphe G soit hamiltonien, il faut que les règles


i-dessous soient véri�ées.

Règle 1 Pour tout sommet v de G, on doit avoir deg(v) > 2.

Règle 2 Si un sommet v est de degré 2, les deux arêtes passant par v doivent

être in
luses dans tout 
y
le hamiltonien.

Règle 3 Un 
y
le hamiltonien ne peut pas 
ontenir de sous-
y
le ; autrement

dit, au 
ours de la 
onstru
tion d'un 
y
le hamiltonien, au
un 
y
le ne

peut être formé avant que tous les sommets aient été visités.

Règle 4 Si, au 
ours de la 
onstru
tion d'un 
y
le hamiltonien, deux arêtes

passant par un sommet v s'imposent, toutes les autres arêtes passant par


e sommet devront être supprimées.

5.5 1) Montrer qu'un 
y
le hamiltonien est toujours de longueur n, où n = jVj =

nombre de sommets.

Indi
ation : utiliser le lemme des poignées de mains.

2) Justi�er la règle 3 : un 
y
le hamiltonien ne peut pas 
ontenir de sous-


y
le.

Indi
ation : utiliser le résultat de l'exer
i
e 3.5.

5.6 Expliquer pourquoi les graphes suivants ne sont pas hamiltoniens.

1)

a

b




d

e

f

g

h

i

2)

a

b




d

e

f

g

h

Ces règles, qui sont des 
onditions né
essaires à l'existen
e d'un 
y
le hamilto-

nien, sont surtout employées quand il s'agit de montrer qu'un graphe n'est pas

hamiltonien. La stratégie 
onsiste à essayer de 
onstruire un 
y
le hamiltonien

et de montrer qu'à une 
ertaine étape, il est impossible d'aller plus loin.

Exemple Montrons que le graphe de Petersen n'est pas hamiltonien.
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1

2

3

4

5

6

7

8

9

10

11

12

1314

15

Pour la 
ommodité de la démonstration, on numé-

rote les arêtes plut�t que les sommets.

La stratégie 
onsiste à essayer de 
onstruire un 
y
le

hamiltonien en exploitant la symétrie du graphe

pour éliminer 
ertaines arêtes. La 
onstru
tion en

plusieurs étapes 
onduira à une 
ontradi
tion.

Supposons par l'absurde que le graphe soit hamilto-

nien. À 
ause de la règle 3, on ne peut pas prendre

toutes les arêtes de 1 à 5.

2

3

4

5

6

7

8

9

10

11

12

1314

15

v

Pour des raisons de symétrie, le 
hoix de 
elle qui

est supprimée est sans importan
e. Supposons que


e soit l'arête 1. Les arêtes 5 et 11, de même que les

arêtes 2 et 12, doivent faire partie du 
y
le hamil-

tonien, en vertu de la règle 2.

2

3

4

5

6

7

8

9

10

11

12

14

15

v

Une des arêtes 3 ou 4 au moins (voire les deux)

doit être in
luse, sinon le sommet v serait de de-

gré 1, enfreignant la règle 1. Par symétrie, 
hoisis-

sons l'arête 3.

La règle 4 stipule alors que l'on peut supprimer

l'arête 13.

2

3

4

5

6

7

8

9

11

12

14

15

Les arêtes 6 et 7 doivent être in
luses (règle 2) et

l'arête 10 ex
lue (règle 4).

2

3

5

6

7

9

11

12

14

15

Les arêtes 9 et 14 doivent être in
luses (règle 2) et

les arêtes 4 et 8 ex
lues (règle 4).

En�n, l'arête 15 doit être 
omprise (règle 2).

Notre 
onstru
tion d'un 
y
le hamiltonien débou
he

�nalement en deux sous-
y
les, 
e qui 
ontredit la

règle 3. C'est pourquoi le graphe de Petersen n'est

pas hamiltonien.
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Soit v un sommet d'un graphe G. Considérons le sous-graphe G

0

de G obtenu

en supprimant le sommet v ainsi que toutes les arêtes de G passant par v.

Un sommet v est appelé un point d'arti
ulation si sa suppression � dé
on-

ne
te � le graphe.

Remarquons qu'il s'agit d'une opération analogue à 
elle de l'algorithme de

Fleury. De la même manière, on s'intéresse aux sommets qui, lorsqu'on les

supprime, rendent le graphe G

0

non 
onnexe.

Exemple Dans le graphe 
i-dessous, v est un point d'arti
ulation.

v

Théorème Un graphe hamiltonien n'admet au
un point d'arti
ulation.

Preuve La suppression d'un sommet au 
y
le hamiltonien laisse tous les

autres sommets sur une même 
haîne 
onservant la 
onnexité de G.

5.7 Parmi les graphes suivants, déterminer 
eux qui sont hamiltoniens et trouver,

le 
as é
héant, un 
y
le hamiltonien.

1)

D

A

BC

2)

A

B

CD

E

3)

A B

CD

E F

GH

4)

A

BC

F

D E

5)

A B C

E FG

6)

A

C

B

D

5.8 Déterminer les graphes hamiltoniens :

1) 2) 3)
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5.9 Montrer que le graphe de Grötzs
h est hamiltonien.

5.10 Donner un exemple 
omportant au moins six sommets de 
ha
un des graphes

suivants :

1) un graphe hamiltonien qui n'est pas eulérien ;

2) un graphe eulérien qui n'est pas hamiltonien.

Réponses

5.1

5.2

5.3 1)

n (n� 1)

2

2)

(n� 1)!

2

5.7 1) hamiltonien : ABCDA

2) hamiltonien : ABCDEA

3) hamiltonien : AEFBCGHDA

4) hamiltonien : ABCDFEA

5) hamiltonien : AECFBGA

6) hamiltonien : ABDCA
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6 Coloriage de graphes

Sans les problèmes de 
oloriage, la théorie des graphes ne serait pas 
e qu'elle

est aujourd'hui. La raison en est le 
élèbre problème des quatre 
ouleurs, déjà

mentionné dans l'introdu
tion, qui a stimulé la re
her
he dans 
e domaine au


ours du xx

e

siè
le.

Dans un graphe, on peut envisager la question du 
oloriage de deux manières :


olorier les sommets ou les arêtes. On se bornera i
i aux résultats de base sur

le 
oloriage des sommets.

Coloriage des sommets

On appelle 
oloriage des sommets d'un graphe G = (V ; E) l'opération

qui 
onsiste à a�e
ter une 
ouleur à 
haque sommet de telle sorte que deux

sommets voisins ne portent jamais la même 
ouleur.

Si le 
oloriage utilise k 
ouleurs, on dit que G est k-
oloriable.

Le nombre 
hromatique de G, noté �(G), est le plus petit nombre de 
ou-

leurs permettant de 
olorier le graphe G.

Remarques

� Les dé�nitions pré
édentes ne sont données que pour des graphes simples.

Les bou
les doivent être ex
lues, 
ar dans tout k-
oloriage les sommets aux

extrémités de toutes les arêtes doivent avoir des 
ouleurs di�érentes. Dans


e 
as, un sommet qui 
omporterait une bou
le devrait avoir deux 
ouleurs.

On ex
lut aussi les arêtes multiples entre deux sommets, 
ar 
elles-
i ne


hangent rien à la nature du 
oloriage.

� Pour des raisons de 
ommodité, on dé
rit les 
ouleurs par des nombres

1; 2; : : : que l'on é
rit à 
�té des sommets 
on
ernés.

Exemples Les graphes 1) et 2) illustrent un 
oloriage de G ave
 respe
tive-

ment 4 et 3 
ouleurs, alors que le graphe 3) n'est pas un 
oloriage de G.

1)

1

2

3 4

3

2)

3

1

2 1

2

3)

2

1

3 2

3

Le problème le plus important est de 
al
uler �(G).

6.1 Trouver le nombre 
hromatique de K

2

, K

3

, K

4

, K

5

et K

n

.
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6.2 Trouver le nombre 
hromatique du graphe 
y
lique C

n

.

Indi
ation : distinguer les 
as n pair et n impair.

6.3 Trouver le nombre 
hromatique d'un arbre.

En général, pour montrer que le nombre 
hromatique d'un graphe G donné

vaut k, il faut véri�er deux 
hoses :

1) trouver un 
oloriage qui utilise k 
ouleurs ;

2) montrer qu'il n'y a au
un 
oloriage possible ave
 moins de k 
ouleurs.

Pour 
ela, on peut s'aider de la propriété suivante :

si H est un sous-graphe de G, alors �(H) 6 �(G).

On peut en
ore remarquer que si G a n sommets, alors �(G) 6 n.

Exemple

1

2

4 3

1

3 2

4

2 3

Déterminons le nombre 
hromatique du

graphe G 
i-
ontre.

On 
ommen
e par 
onstruire un 
oloriage ave


4 
ouleurs ; don
 �(G) 6 4.

Mais G ne peut pas être 
olorié ave
 moins de

4 
ouleurs, 
arG 
ontient le graphe 
ompletK

4

;

don
 4 = �(K

4

) 6 �(G).

Finalement �(G) = 4.

6.4 Déterminer le nombre 
hromatique du graphe suivant :

6.5 Déterminer le nombre 
hromatique pour 
ha
un des graphes suivants :

1) 2) 3)

4) 5) 6)
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Appli
ations

On peut modéliser la résolution d'un problème de re
her
he opérationnelle par

un 
oloriage de graphe en groupant dans la même 
lasse des individus ou des

objets qui n'entrent pas en 
on�it.

Exemples

Un problème de sto
kage Supposons qu'une entreprise ait à sto
ker des

produits 
himiques. Certains d'entre eux peuvent réagir violemment (explo-

sion, dégagement toxique, et
. . . ) s'ils entrent en 
onta
t. Pour 
ette raison,

de tels produits sont dits in
ompatibles. Pour les garder ave
 sé
urité, il est

né
essaire de les 
onserver dans des zones séparées. Le plus simple serait d'at-

tribuer une zone de sto
kage par produit, mais on risque alors d'utiliser plus

de zones que né
essaires (sauf si tous les produits sont mutuellement in
om-

patibles). Quel est le nombre minimum de zones requises pour 
onserver tous


es produits de manière sé
urisée ?

Ce problème de sto
kage se traduit en un problème de 
oloriage d'un graphe.

Considérons le graphe G = (V ; E) où V représente l'ensemble des produits


himiques et E l'ensemble d'arêtes reliant deux produits in
ompatibles. Déter-

miner le nombre minimum de zones revient à déterminer �(G).

Un problème d'horaire Une université doit organiser les horaires des exa-

mens. On suppose qu'il y a 7 épreuves à plani�er 
orrespondant aux 
ours

numérotés de 1 à 7. Il ne peut y avoir qu'une épreuve par jour. Les paires de


ours suivants ont des étudiants 
ommuns : 1 et 2, 1 et 3, 1 et 4, 1 et 7, 2 et 3,

2 et 4, 2 et 5, 2 et 7, 3 et 4, 3 et 6, 3 et 7, 4 et 5, 4 et 6, 5 et 6, 5 et 7, 6 et 7.

Comment organiser sur une durée minimale 
es épreuves de façon qu'au
un

étudiant n'ait à passer deux épreuves le même jour ?

À 
ette �n, 
onstruisons le graphe G dont les sommets sont les épreuves nu-

mérotées de 1 à 7. Une arête relie deux sommets lorsque les deux 
ours 
orres-

pondants possèdent des étudiants 
ommuns :

1

2

3

45

6

7

Plani�er les examens en un temps minimal 
onsiste à déterminer une k-
oloration

de G, ave
 k = �(G).

G possède un sous-graphe 
omplet d'ordre 4 (de sommets 1; 2; 3; 4), don
 4 6

�(G). Déterminons une partition de G en sous-ensemble stables, à savoir en

sous-ensembles ne 
ontenant que des sommets non voisins :
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S

1

= f1 ; 6g S

2

= f2g S

3

= f3 ; 5g S

4

= f4 ; 7g

d'où �(G) 6 4 et �nalement �(G) = 4.

Les examens peuvent être répartis en 4 jours de la manière suivante :

� 1

er

jour : épreuves des 
ours 1 et 6 ;

� 2

e

jour : épreuves du 
ours 2 ;

� 3

e

jour : épreuves des 
ours 3 et 5 ;

� 4

e

jour : épreuves des 
ours 4 et 7.

6.6 Dans un 
ongrès, on 
her
he à plani�er l'horaire d'une série de 
onféren
es

qui doivent être toutes de même durée. Dans le tableau 
i-dessous, les étoiles

indiquent les interventions qui ne peuvent pas 
oïn
ider. Comment pro
éder

pour que la durée totale des interventions soit minimale ?

a b 
 d e f g

a � ? ? ? � � ?

b ? � ? ? ? � ?


 ? ? � ? � ? �

d ? ? ? � � ? �

e � ? � � � � �

f � � ? ? � � ?

g ? ? � � � ? �

6.7 Un gardien de zoo souhaite pla
er 8 animaux A, B, C, D, E, F, G et H dans des

en
los. Le tableau 
i-dessous indique par des 
roix les animaux qui, pour des

raisons de sé
urité, doivent être pla
és dans des en
los di�érents. Déterminer

à l'aide d'un graphe 
onvenable le nombre minimum d'en
los qui permet de

pla
er 
es animaux de façon judi
ieuse.

A B C D E F G H

A � � � � � � � �

B � � � � � � � �

C � � � � � � � �

D � � � � � � � �

E � � � � � � � �

F � � � � � � � �

G � � � � � � � �

H � � � � � � � �

Algorithme glouton

Il y a un algorithme naïf pour dé
ider si un graphe G de n sommets peut

être 
olorié ave
 k 
ouleurs. Il su�t de véri�er si l'un des k

n


oloriages est

a

eptable. En itérant 
et algorithme pour un nombre 
roissant de k 
ouleurs,
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on obtient un algorithme pour 
al
uler le nombre 
hromatique, mais le temps

pour l'e�e
tuer 
roît exponentiellement ave
 le nombre des sommets.

Trouver le nombre 
hromatique d'un graphe donné est un problème di�
ile. On

ne 
onnaît a
tuellement au
un algorithme qui fon
tionne en temps polynomial

et la plupart des spé
ialistes pensent qu'il n'en existe au
un.

Pourtant, il existe une méthode simple de 
oloriage : elle 
onsiste à numéroter

les sommets du graphe et à 
olorier su

essivement 
haque sommet ave
 la pre-

mière 
ouleur qui n'a pas en
ore été attribuée à ses voisins. Malheureusement,


e pro
édé ne fournit pas for
ément un 
oloriage minimum.

On pro
ède 
omme suit :

� On numérote arbitrairement les sommets de G, à savoir v

1

; v

2

; : : : ; v

n

, de

même que les 
ouleurs à disposition.

� On a�e
te la 
ouleur 1 à v

1

.

� On 
onsidère ensuite le sommet suivant v

2

et on lui attribue la première


ouleur non déjà attribuée à ses voisins. Dans 
e 
as, 
'est la 
ouleur 1 ou 2.

� Plus généralement, soit le sommet v

i

tel que tous les sommets pré
édents

v

1

; v

2

; : : : ; v

i�1

soient déjà 
oloriés. On attribue alors à v

i

la première 
ouleur

non déjà attribuée à ses voisins.

� On poursuit de même jusqu'à 
olorier ainsi tous les sommets.

Exemple Voi
i l'e�et de l'algorithme glouton sur le graphe G :

v

1

v

2

v

3

v

4

v

5

v

6

v

7

v

8

v

9

v

10

1

2

3

1

2

2

1

3 4 2

1

2

3

2

2

2

3

3 1 1

L'appli
ation de l'algorithme glouton

montre que le grapheG est 4-
oloriable.

Pourtant son nombre 
hromatique

�(G) = 3, 
omme le montre la �gure


i-
ontre.

Remarques

� L'e�
a
ité de l'algorithme glouton dépend beau
oup de l'ordre initial donné

aux sommets. Il y a n! ordres possibles et, si l'on veut les essayer tous,

l'algorithme requiert un temps ex
eptionnel.

Théorie des graphes : 
oloriage de graphes 6.5



� Il peut arriver que, dans la numérotation des sommets, l'on tombe pré
isé-

ment sur 
elle qui est asso
iée à un 
oloriage minimum.

Malgré le gaspillage possible, 
et algorithme est utilisé en théorie et en pratique.

6.8 Utiliser l'algorithme glouton pour 
olorier les sommets du graphe suivant en

respe
tant dans 
haque 
as l'ordre proposé.

1)

a

b




d

e

f

g

h

2)

a

b

f

h




d

e

g

3)

a

e

g

d

f

h




b

Quelle est la valeur de �(G) ?

6.9 Utiliser l'algorithme glouton pour 
olorier les graphes suivants :

1)

2 4 6 8

1 3 5 7

2)

a

f

e

d

b




Théorème SiG est un graphe simple tel que le degré maximum des sommets

soit d, alors �(G) 6 d+ 1.

Preuve Quelle que soit la numérotation des sommets, l'algorithme glouton

n'utilise jamais plus de d + 1 
ouleurs, puisqu'un sommet n'a jamais plus de

d voisins.

6.10 Montrer qu'ajouter une arête à un graphe augmente son nombre 
hromatique

d'au plus 1.

Ave
 plus d'e�orts, on peut améliorer le résultat du théorème pré
édent.

Théorème de Brooks (1941) Si G est un graphe simple et 
onnexe sans

être un graphe 
omplet, et si le plus haut degré des sommets de G est d (d > 3),

alors �(G) 6 d.

Nous ne démontrerons pas 
e théorème, mais nous allons en illustrer l'emploi.
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Exemple

Considérons à nouveau le graphe G 
i-
ontre.

Nous avons déjà vu que 4 6 �(G), du fait que G


ontient le graphe 
omplet K

4

.

Par ailleurs, G satisfait les 
onditions du théorème de

Brooks ave
 d = 4, d'où �(G) 6 4.

On 
on
lut que �(G) = 4.

Malheureusement, la situation n'est pas toujours aussi favorable. En parti
u-

lier, siG 
ontient un petit nombre de sommets de degré élevé, la borne proposée

par le théorème de Brooks n'est du tout satisfaisante.

Par exemple, 
onsidérons le graphe 
i-
ontre.

D'après le théorème de Brooks, �(G) 6 12, alors

que �(G) = 2.

6.11 Dessiner deux graphes non isomorphes, simples et 
onnexes, 
omportant 5 som-

mets, dont le plus haut degré est d, et tels que �(G) = d+ 1.

Polyn�me 
hromatique

Malgré les résultats obtenus 
i-dessus, déterminer de manière e�
a
e le nombre


hromatique reste en
ore un problème non résolu. Nous avons vu que la mé-

thode 
onsistant à essayer toutes les possibilités devient rapidement imprati-


able. Pourtant, il existe des algorithmes qui améliorent substantiellement la

re
her
he du nombre 
hromatique. Nous allons en présenter un qui utilise des

te
hniques algébriques.

Soit G un graphe simple. Notons P

G

(�) le nombre de façons de 
olorier les

sommets de G ave
 � 
ouleurs. La fon
tion P

G

(�) s'appelle le polyn�me


hromatique

1

de G.

6.12 Déterminer le polyn�me P

G

(�) siG est le graphe nul (sans arêtes) à n sommets.

6.13 Déterminer le polyn�me P

G

(�) si G est le graphe 
omplet K

n

.

Proposition Si G est un arbre à n sommets, alors P

G

(�) = � (�� 1)

n�1

.

1. Il n'est pas évident a priori que le nombre de �-
oloriages d'un graphe G soit un

polyn�me en �. Ce résultat sera établi plus tard (théorème de Birkho�).
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Preuve On montre le résultat par ré
urren
e sur le nombre de sommets n.

Si n = 1, on a évidemment P

G

(�) = �.

Si n > 1, l'arbre possède une extrémité, 
'est-à-dire un sommet a de degré 1.

Ôtons de G le sommet a et l'arête issue de a. Le graphe H restant est un arbre

à n� 1 sommets. L'hypothèse de ré
urren
e implique P

H

(�) = � (�� 1)

n�2

.

Dans un 
oloriage de G, le sommet a peut re
evoir l'une quel
onque des � 
ou-

leurs, à part 
elle de son unique voisin, d'où P

G

(�) = P

H

(�) (�� 1).

On 
on
lut �nalement que P

G

(�) = � (�� 1)

n�2

(�� 1) = � (�� 1)

n�1

.

Il est 
lair que :

� si � < �(G), alors P

G

(�) = 0 ;

� si � > �(G), alors P

G

(�) > 0.

Le nombre 
hromatique de G est ainsi le plus petit entier positif � pour lequel

P

G

(�) > 0. C'est pourquoi trouver une méthode pour 
al
uler P

G

(�), 
'est

trouver une méthode pour 
al
uler �(G).

6.14 É
rire les polyn�mes 
hromatiques des graphes suivants :

1) le graphe 
omplet K

6

;

2) le graphe bipartite 
omplet K

1;5

:

De 
ombien de manières 
es graphes peuvent-ils être 
oloriés ave
 7 
ouleurs ?

Le théorème suivant va fournir une méthode systématique pour obtenir le

polyn�me 
hromatique d'un graphe à partir du polyn�me 
hromatique d'un

graphe nul.

Mais, pour pouvoir l'énon
er, nous devons d'abord dé�nir deux opérations sur

les graphes.

Soit une arête e reliant des sommets u et v d'un graphe G.

Le graphe G� e est le graphe obtenu à partir de G en supprimant l'arête e.

Le graphe Gr e est le graphe obtenu en 
ontra
tant e, 
'est-à-dire en suppri-

mant e et en identi�ant les sommets u et v.

Exemple Nous avons représenté 
i-dessous les graphes G, G� e et Gr e :

uv

e

uv u = v

Théorème (suppression-
ontra
tion) Soient un graphe simple G, G� e

le graphe obtenu en supprimant une arête e et G r e le graphe obtenu en


ontra
tant 
ette arête e. Alors :

P

G

(�) = P

G�e

(�)� P

Gre

(�)
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Preuve Les 
oloriages de G � e peuvent se partager en deux 
lasses dis-

jointes : la 
lasse C

1

où u et v sont de 
ouleurs di�érentes et la 
lasse C

2

où u

et v sont de même 
ouleur. Posons N

1

= jC

1

j et N

2

= jC

2

j.

1

er


as : u et v sont de 
ouleurs di�érentes.

La suppression de l'arête e dans G n'a�e
te en rien le 
oloriage de G,

d'où N

1

= P

G

(�).

2

nd


as : u et v sont de même 
ouleur.

Le nombre de 
oloriages de G� e vaut dans 
e 
as N

2

= P

Gre

(�).

Il en résulte P

G�e

(�) = N

1

+N

2

= P

G

(�) + P

Gre

(�), d'où le théorème.

L'intérêt du théorème 
i-dessus est de donner une formule de ré
urren
e pour


al
uler P

G

(�) selon l'une des méthodes suivantes :

1) après avoir retiré su

essivement toutes les arêtes, on parvient au graphe

nul ave
 n sommets ;

2) dans l'autre sens, en ajoutant 
haque fois une arête, on parvient au

graphe 
omplet K

n

.

Pour n �xé, quand le nombre d'arêtes est petit, la première méthode est pré-

férable ; quand le nombre d'arêtes est grand, 
'est la se
onde méthode qui est

préférable.

Illustrons 
es deux méthodes pour le graphe 
y
lique C

4

, en symbolisant le

polyn�me 
hromatique d'un graphe par le graphe lui-même, dessiné entre a
-


olades.

Exemple : rédu
tion au graphe nul

( )

=

( )

�

( )

=

( )

�

( )

�

( )

=

( )

�

0

�

( )

�

( )

1

A

�

( )

=

�

� (�� 1)

�

2

�

�

�

2

(�� 1)� � (�� 1)

�

� � (�� 1) (�� 2)

= �

4

� 4�

3

+ 6�

2

� 3�

Exemple : 
omplétion en K

n

( )

=

( )

+

( )

=

( )

+

( )

Théorie des graphes : 
oloriage de graphes 6.9



=

( )

+

( )

+

( )

=

( )

+

( )

+

( )

= � (�� 1) (�� 2) (�� 3) + � (�� 1) (�� 2) + � (�� 1)

2

= �

4

� 4�

3

+ 6�

2

� 3�

6.15 Déterminer le polyn�me 
hromatique des graphes suivants :

1) 2)

6.16 Déterminer le polyn�me 
hromatique des graphes suivants :

1) 2)

6.17 Déterminer le polyn�me 
hromatique des graphes suivants :

1) 2)

6.18 Construire des graphes possédant les polyn�mes 
hromatiques suivants :

1) �

2

(�� 1) (�� 2) 2) � (�� 1)

2

(�� 2)

3) � (�� 1) (�� 2)

2

4) � (�� 1) (�� 2) (�� 3)

6.19 Trouver un graphe admettant �

5

� 6�

4

+11�

3

� 6�

2

pour polyn�me 
hroma-

tique.

Théorème de Birkho� SoitG un graphe simple ave
 n sommets etm arêtes.

Alors P

G

(�) est un polyn�me unitaire de degré n en �, à 
oe�
ients entiers et

de terme 
onstant nul. De plus, ses 
oe�
ients alternent en signe et le 
oe�-


ient de �

n�1

vaut �m.
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Preuve La démonstration se fait par ré
urren
e sur le nombre d'arêtes du

graphe dont le nombre de sommets n est �xé.

Si m = 0, G est le graphe nul ave
 n sommets, don
 P

G

(�) = �

n

.

Soit G un graphe d'ordre n ave
 m arêtes et soit e une arête quel
onque de G.

À la fois G� e et Gr e (après suppression des arêtes multiples si né
essaires)

sont des graphes simples ave
 au plus m � 1 arêtes. Ainsi, par hypothèse de

ré
urren
e, on a :

P

G�e

(�) = �

n

� a

n�1

�

n�1

+ : : :+ (�1)

n�1

a

1

�

P

Gre

(�) = �

n�1

� b

n�2

�

n�2

+ : : :+ (�1)

n�2

b

1

�

où a

1

; : : : ; a

n�1

; b

1

; : : : ; b

n�2

sont des entiers non négatifs et a

n�1

= m � 1 =

nombre d'arêtes de G� e.

D'après le théorème de suppression-
ontra
tion, P

G

(�) = P

G�e

(�)� P

Gre

(�),

de sorte que :

P

G

(�) = �

n

� (a

n�1

+ 1)�

n�1

+ : : :+ (�1)

n�1

(a

1

+ b

1

)�

Puisque a

n�1

+ 1 = m, P

G

(�) véri�e toutes les propriétés annon
ées.

6.20 Montrer que les polyn�mes suivants ne sont pas des polyn�mes 
hromatiques

de graphes.

1) �

7

� �

6

+ 1 2) �

4

� 3�

3

+ �

2

� �

Réponses

6.1 �(K

n

) = n

6.2 �(C

n

) =

(

2 si n est pair

3 si n est impair

6.3 2 (s'il possède au moins 2 sommets)

6.4 3

6.5 1) 3 2) 3 3) 2

4) 4 5) 5 6) 4

6.6 a, e, f b 
, g d

6.7 4 en
los sont né
essaires et su�sent :
A C B E D H F G

Théorie des graphes : 
oloriage de graphes 6.11



6.8 1)

1

1

2

2

3

3 4

4

2)

1

1

2

3

2

2 3

3

3)

1

2

2

1

2

2 1

1

�(G) = 2

6.9 1)

1 2 3 4

1 2 3 4

2)

1

2

4 3

2 1

6.11 K

5

et C

5

6.12 P

G

(�) = �

n

6.13 P

G

(�) = � (�� 1) (�� 2) � � � (�� n + 1)

6.14 1) � (�� 1) (�� 2) (�� 3) (�� 4) (�� 5) 5040 2) � (�� 1)

5

54 432

6.15 1) � (�� 1)

2

(�� 2) 2) � (�� 1) (�� 2)

2

6.16 1) � (�� 1)

3

(�� 2)

2

2) � (�� 1) (�� 2) (�

2

� 2�+ 2)

6.17 1) � (�� 1) (�� 2) (�

2

� 3�+ 3) 2) � (�� 1) (�� 2) (�

2

� 5�+ 7)

6.18 1) 2)

3) 4)

6.19
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7 Algorithmes e�
a
es

En théorie des graphes, nous avons déjà vu 
e qu'est un algorithme, à savoir la

donnée d'une série d'instru
tions qui permettent, pas à pas, d'obtenir la solution

d'un problème donné.

Dans la pratique, la dé
ouverte d'un algorithme pour résoudre un problème n'est

pas su�sante. Il faut en
ore se poser la question de son e�
a
ité. Pour mieux


omprendre 
e que 
ela veut dire, revenons au problème du voyageur de 
ommer
e

et supposons que 
elui-
i, habitant la ville A, dispose de la 
arte routière suivante

ave
 les distan
es entre les villes (il doit revenir en A).

A

B

C

D

E

2

6

1

4

3

2

1

5

2

2

17

2

0

3

0

3

0

4

0

7.1 La manière la plus évidente de résoudre 
e problème est d'employer la � for
e

brute � :

1) faire la liste de tous les itinéraires possibles ;

2) 
al
uler la longueur de 
ha
un d'entre eux ;

3) séle
tionner 
elui qui est le plus 
ourt.

7.2 1) Combien y a-t-il d'itinéraires possibles dans l'exer
i
e pré
édent ?

2) En supposant que le graphe soit 
omplet, 
ombien y a-t-il d'itinéraires pos-

sibles pour

(a) 6 villes ?

(b) 7 villes ?

(
) n villes ?

3) Imaginons qu'un ordinateur très rapide puisse dé
rire un itinéraire et 
al
uler

sa longueur en 10 mi
rose
ondes. Combien de temps lui faudrait-il, ave


20 villes, pour déterminer le trajet le plus 
ourt en utilisant la méthode de

la � for
e brute � ?

La te
hnique de la � for
e brute � ou autrement dit de l'énumération exhaus-

tive peut être très e�
a
e sur de petits exemples, mais quand les données sont

d'une 
ertaine importan
e, elle devient 
omplètement imprati
able. À part le fait

d'exiger qu'un algorithme ait 
ha
une de ses étapes bien dé�nies et fournisse la

solution en un nombre �ni d'étapes, il faut don
 en
ore ajouter des 
onsidérations

d'ordre pratique. Est-
e que le problème, pour des données de taille modérée, peut

être résolu par tel ou tel algorithme en un temps raisonnable ? Répondre à 
ette
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question implique de dénombrer 
ha
une des opérations qui sont faites à 
haque

étape.

Par exemple, dans l'algorithme de Fleury, on peut véri�er que 
e nombre est

proportionnel à n où n est le nombre d'arêtes. Pour l'algorithme de 
onnexion

minimale, 
e nombre est à peu près proportionnel à n

2

où n est le nombre de

sommets.

Dans 
es 
as ou dans d'autres où le temps utilisé pour faire fon
tionner l'algo-

rithme est un polyn�me en n, où n représente un 
ertain paramètre asso
ié à la

quantité des données implémentées dans l'ordinateur, on parle d'algorithme en

temps polynomial.

Il existe des algorithmes dont le temps de fon
tionnement est de l'ordre d'une

puissan
e de n. C'est le 
as par exemple lorsqu'il faut examiner toutes les parties

d'un ensemble à n éléments, puisqu'un tel ensemble a 2

n

parties. On dit alors que


es algorithmes sont en temps exponentiel ; on les appelle aussi algorithmes

gloutons.

7.3 Imaginons que l'on utilise un ordinateur 
apable d'e�e
tuer 1000 opérations à la

se
onde. Compléter le tableau suivant qui donne les temps approximatifs né
es-

saires pour e�e
tuer divers algorithmes, les uns en temps polynomial (d'ordre n

et n

3

), les autres en temps exponentiel (d'ordre 2

n

et 3

n

).

n = 10 n = 50 n = 100

n

n

3

2

n

3

n

L'exer
i
e 7.3 montre pourquoi l'on 
onsidère les algorithmes en temps polynomial


omme e�
a
es, alors que les algorithmes en temps exponentiel sont 
onsidérés

de peu d'utilité sauf dans les exemples de petite taille.

Algorithme de Dijkstra

L'algorithme de Dijkstra est un algorithme en temps polynomial (d'ordre n

2

) qui

permet de trouver quelle est la longueur du plus 
ourt 
hemin qui joint deux villes

déterminées lorsqu'on 
onnaît la longueur des routes.

Par exemple, 
onsidérons la situation suivante où les sommets représentent des

villes, les arêtes des routes et les nombres des distan
es.

A

B

C

D

S E

1

2

3

1

3

5

1

1

3
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On 
her
he à déterminer le plus 
ourt 
hemin allant de S à E.

L'idée générale de l'algorithme de Dijkstra est de par
ourir le graphe en allant

de S à E en attribuant de pro
he en pro
he à 
haque sommet un poids qui est

égal à la plus petite des distan
es entre S et 
e sommet.

Plus pré
isément, on pro
ède 
omme suit.

Initialisation Tous les sommets sont non marqués et ont un poids provisoire

in�ni, sauf le sommet de départ qui a un poids nul.

Itérations Tant qu'il existe un sommet non marqué :

� 
hoisir le sommet T qui possède le plus petit poids provisoire ;

� �xer dé�nitivement le poids de T et marquer le sommet T ;

� pour 
haque sommet U non marqué et voisin de T :

� 
al
uler la somme s du poids de T et du poids de l'arête reliant T à U ;

� si s est inférieur au poids provisoire de U, a�e
ter s à U 
omme nouveau

poids provisoire et le noter s(T) pour indiquer ainsi la provenan
e de


ette dernière a�e
tation, sinon 
onserver le poids provisoire.

Voi
i l'appli
ation de 
et algorithme au graphe pré
édent :

1

2

3

1

3

5

1

1

3

1

A

B

1

1

C

D

1

0

S

1

E

1

2

3

1

3

5

1

1

3

3(S)

A

B

1(S)

1

C

D

1

0

S

1

E

1

2

3

1

3

5

1

1

3

2(B)

A

B

1(S)

4(B)

C

D

6(B)

0

S

1

E

1

2

3

1

3

5

1

1

3

2(B)

A

B

1(S)

4(B)

C

D

6(B)

0

S

1

E

1

2

3

1

3

5

1

1

3

2(B)

A

B

1(S)

4(B)

C

D

5(C)

0

S

7(C)

E

1

2

3

1

3

5

1

1

3

2(B)

A

B

1(S)

4(B)

C

D

5(C)

0

S

6(D)

E
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1

2

3

1

3

5

1

1

3

2(B)

A

B

1(S)

4(B)

C

D

5(C)

0

S

6(D)

E

Le plus 
ourt 
hemin a un poids 6.

Il se lit à l'envers : EDCBS.

On peut aussi représenter les di�érentes étapes de l'algorithme exé
utées sur 
et

exemple par un tableau :

S A B C D E sommets marqués

0

0 3(S) 1(S) S

2(B) 1(S) 4(B) 6(B) S;B

2(B) 4(B) 6(B) S;B;A

4(B) 5(C) 7(C) S;B;A;C

5(C) 6(D) S;B;A;C;D

6(D) S;B;A;C;D;E

7.4 Utiliser l'algorithme de Dijkstra pour trouver le 
hemin de poids minimal entre A

et F :

A

B

C

D

E

F

9

7

3

5

2

4

5

6

1

8
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7.5 Utiliser l'algorithme de Dijkstra pour trouver le 
hemin de poids minimal entre A

et G :

A

B

C

D

E

F

G

30

50

19

6

40

12

10

35

23

11

8

20

7.6 Utiliser l'algorithme de Dijkstra pour trouver le 
hemin de poids minimal entre A

et G :

A

B

C

D

E

F

G

H

I

J

K

L

3

2

9

2

4

6

9

3

1

2

1

2

5

9

3

5

6

5

2

7.7 Utiliser l'algorithme de Dijkstra pour trouver le 
hemin de poids minimal entre S

et E, en prenant garde au fait qu'il s'agit d'un graphe orienté.

A

B

C

D

S E

F

G

1

2

2

5

1

3

2

2

3

7

1

4

4

6

Le problème du postier

Un postier 
her
he à distribuer ses lettres en par
ourant la plus petite distan
e

tout en retournant à son point de départ. Il doit passer évidemment par 
haque

rue au moins une fois en évitant autant que possible de repasser par un tronçon

déjà par
ouru.

Il y a quelques années, la ville de Züri
h 
ommandita une grande étude pour

déterminer rationnellement le plan de déneigement de ses rues. C'est, en plus


ompliqué, un problème semblable à 
elui du postier. En e�et, il est né
essaire

en plus de partager habilement la ville en se
teurs de manière à o

uper 
haque

véhi
ule de déneigement.
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Le problème peut être reformulé en termes de graphe pondéré où le graphe 
or-

respond au réseau des rues et le poids de 
haque arête à la longueur de la rue


orrespondante. Dans 
ette nouvelle formulation, l'exigen
e est de trouver un


hemin fermé de poids minimal qui in
lut 
haque arête au moins une fois.

Si le graphe est eulérien, 
haque 
hemin eulérien sera un itinéraire a

eptable. Un

tel 
hemin peut être obtenu si né
essaire à l'aide de l'algorithme de Fleury.

Par 
ontre, si le graphe n'est pas eulérien, le problème est beau
oup plus di�
ile.

On 
onnaît 
ependant un algorithme e�
a
e pour trouver la solution, même s'il

est trop 
ompliqué pour être donné i
i. La solution générale s'inspire du 
as

parti
ulier où le graphe est semi-eulérien.

Considérons par exemple le graphe suivant :

B

F

C

E

A D
8

5

3

4

14

6

10

9

5

Puisque B et E sont les deux seuls sommets de degré impair, nous pouvons trouver

un 
hemin semi-eulérien allant de B à E en par
ourant 
haque arête une seule

fois.

Pour retourner au point de départ en par
ourant la plus petite distan
e possible,

nous pouvons trouver le plus 
ourt 
hemin allant de B à E en utilisant l'algorithme

de Dijkstra.

La solution du problème du postier est obtenue dans 
e 
as en joignant le plus


ourt 
hemin EFAB au 
hemin semi-eulérien initial BAFBCFECDE. La distan
e

totale vaut don
 13 + 64 = 77.

7.8 Résoudre le problème du postier pour le graphe pondéré 
i-dessous :

A

B

CD

E

2

7

1

2

2

4

3
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7.9 Résoudre le problème du postier pour le graphe pondéré 
i-dessous :

A

B C

D

E

4

1

1

1

5

4

1

3

7.10 Résoudre le problème du postier pour le graphe pondéré 
i-dessous :

A

B C

D

EF

5

9

10

5

14

3

8

4

7

Réponses

7.1 ABCDEA 109 ACBDEA 121 ADBCEA 116 AEBCDA 115

ABCEDA 105 ACBEDA 116 ADBECA 137 AEBDCA 141

ABDECA 131 ACDBEA 141 ADCBEA 115 AECBDA 116

ABDCEA 130 ACDEBA 130 ADCEBA 125 AECDBA 130

ABEDCA 130 ACEBDA 137 ADEBCA 116 AEDBCA 121

ABECDA 125 ACEDBA 131 ADECBA 105 AEDCBA 109

7.2 1) 4! = 24 2) 5! = 120 6! = 720 (n� 1)! 3) 38 573 années

7.3

n = 10 n = 50 n = 100

n 0;01 s 0;05 s 0;1 s

n

3

1 s 2 min 16 min

2

n

1 s 35 702 ans 4 � 10

19

ans

3

n

1 min 2;27 � 10

13

ans 1;63 � 10

37

ans

7.4 AEDF de poids 10

7.5 ABDCFEG de poids 77

7.6 ABEHFIKG de poids 17

7.7 SCFE de poids 10

7.8 BAEDCBECDEB de poids 27

7.9 BACDAEDBCAEDB de poids 24

7.10 CDEFABCEBFEDC de poids 79

Théorie des graphes : algorithmes e�
a
es 7.7


