1 Introduction

Problémes historiquement célébres
Les ponts de Konisberg

Le probléme des ponts de Konisberg est a 1'origine de la théorie des graphes.
Cette ville de Prusse orientale est batie sur les bords d’une riviére ainsi que sur
deux iles. Le probléme consiste a trouver une promenade & partir d’un point
donné qui fasse revenir a ce point en passant une fois et une seule par chacun
des sept ponts de la ville de Konigsberg.

Personne n’ayant trouvé de solution, on se tourna vers le plus grand mathé-
maticien de 1’époque, Leonhard Euler. [’article qu’il publia en 1741 montre
que l'on peut schématiser la situation (les deux iles, les deux bords et les sept
ponts) par un diagramme que 1’on appelle graphe :

C
@ A@D
B

Euler a démontré que pour résoudre ce probléme, il suffit de mettre en évidence
certaines propriétés du graphe.

1.1 Dessiner le graphe représentant les chemins de la figure suivante et préciser le
nombre de sommets, le nombre d’arétes et le degré de chaque sommet.
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Le voyageur de commerce

De prime abord, le probléme du voyageur de commerce s’apparente a celui des
ponts de Konisberg. Considérons par exemple 7 villes A, B, C, D, E, F et G
reliées entre elles par des routes selon le diagramme ci-dessous :

B E

C F

Est-il possible de trouver un trajet qui, commencant et se terminant par A,
passe exactement une fois par chacune des villes B, C, D, E, F et G?

La forme plus moderne de ce probléme est attribuée & Hassler Whitney et se
rapproche de la situation réelle du voyageur de commerce. Dans un graphe
comme ci-dessus, on attribue a chaque aréte un nombre positif (correspondant
a la distance, au coiit, au temps, etc.) et ’'on cherche un circuit fermé minimal
ne passant qu'une fois par chaque sommet.

Ce probléme n’a toujours pas de solution générale, bien que des solutions dans
des cas particuliers aient été trouvées.

La question d’optimiser (rendre minimal ou maximal) une quantité apparait
souvent en recherche opérationnelle. Considérons par exemple un voyageur
désirant aller en voiture d’Amsterdam a Florence. Il a en main le graphe suivant
qui donne les distances pour relier deux villes voisines.
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Quel itinéraire doit-il prendre pour rendre le trajet le plus court possible ?

La découverte d’un algorithme permettant de traiter ce genre de problémes
n’a été faite qu’en 1959.
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1.2 Un gardien de zoo, commencant sa visite par les antilopes, veut encore passer
chez les boas, les cerfs, les dromadaires et les éléphants. Ces lieux sont no-
tés respectivement par A, B, C, D et E. Les distances sont indiquées sur le
diagramme.

Trouver l'itinéraire le plus court possible commencant et finissant par A.

Coloriage des cartes

Considérons, par exemple, la carte des Etats-Unis sans I’Alaska ni Hawai.

&

WASHINGTON
NORTH DAKOTA
OREGON - .
SOUTH DAKOTA WISCONSIN ¢
!
CALIFORNIA

vbmn

KENTUCKY 34
@ CONN: CONNECTICUT
L MASS: MASSACHUSETTS

NH: NEW HAMPSHIRE

Ri: RHODE ISLAND
VT: VERMONT

On colorie ce genre de cartes en sorte que deux régions (ici des Etats) voisines
aient une couleur différente. La question de savoir combien de couleurs sont
nécessaires a été posée pour la premiére fois par Francis Guthrie en 1852 et a
fait depuis 'objet de nombreuses recherches par des mathématiciens de renom
(Morgan, Cayley, Kempe).

En fait, il est assez facile de montrer que cing couleurs suffisent toujours quelle
que soit la carte, mais pas trois couleurs. On le voit en considérant I’anneau
des cinq Etats qui entourent le Nevada. Cet anneau nécessite au moins trois
couleurs et le Nevada en a besoin d’une autre, d’ott un minimum de quatre.
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Ainsi le probléme du coloriage des cartes est devenu pendant longtemps le
célébre probléme des quatre couleurs : toute carte peut-elle étre coloriée avec
quatre couleurs ?

Il aura fallu attendre 1976 pour que deux mathématiciens, Kenneth Appel et
Wolfgang Haken, utilisant plusieurs milliers d’heures d’ordinateur, trouvent
une preuve longue de plusieurs centaines de pages avec plus de 20 000 confi-
gurations. Le célébre probléme était enfin résolu.

En dualisant le probléme, c’est-a-dire en remplacant chaque pays par un som-
met et chaque frontiére commune par une aréte entre les deux pays concernés,
on obtient un graphe. Le probléme du coloriage des cartes se transforme en un
probléme du coloriage des sommets.

Chimie moléculaire

A I'époque de la Révolution francaise, on dessinait déja des diagrammes res-
semblant a des graphes pour décrire les molécules.

Mais ce n’est que dans les années 1850, sous l'influence de savants comme
Auguste Kekule et Crum Brown, quand on eut compris un peu mieux la théorie
des liaisons chimiques (théorie de la valence), que les graphes furent utilisés
plus largement.

Cependant, de telles représentations ignorent en général la structure spatiale
de la molécule.

Par exemple, la molécule de méthane CH,4, représentée H
par le diagramme ci-contre, n’a pas une structure pla- ‘
naire. En effet, la stéréochimie nous enseigne que ’atome H—C—H
de carbone C est situé au centre d’un tétraédre régulier ‘
dont les quatre sommets sont les atomes d’hydrogene H. H

Néanmoins ce mode de représentation s’est avéré utile pour illustrer comment
les différents atomes sont reliés entre eux et pour obtenir ainsi des informations
sur le comportement chimique de telle ou telle molécule.

La connaissance de la formule chimique d’une molécule ne permet pas toujours
de déterminer complétement toutes ses propriétés chimiques. Cela est di a
Iexistence d’isoméres, c¢’est-a-dire a des molécules ayant les mémes atomes et
les mémes liaisons, mais arrangés différemment.

Voici, par exemple, deux isomeéres de CsHys :

H
H—C—H
H H H H H H H H
pentane isopentane
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1.3

1.4

Rappelons qu’un atome d’hydrogéne H n’a qu’un électron et qu’il ne peut se
lier dans une molécule qu’a un seul atome. En revanche, I’atome de carbone C
a quatre électrons disponibles dans sa couche périphérique et peut se lier avec
au plus quatre autres atomes.

La figure ci-dessous représente une molécule de méthane CH, ainsi qu’une
molécule de propane C3Hg.

q H H H
N NS S S S
méthane propane

1) En considérant ces diagrammes comme des graphes, que peut-on dire des
sommets correspondant aux atomes de carbone et aux atomes d’hydro-
géne 7

2) Représenter les graphes correspondant aux deux isoméres de C4Hy,.

3) Montrer que C5Hj, a un troisiéme isomeére.

Autres exemples d’application

L’intérét de la théorie des graphes réside dans sa capacité a pouvoir modéli-
ser par des diagrammes géométriques qu’on appelle graphes, des relations et
arrangements entre divers éléments d’une situation donnée.

L’étude des propriétés de ces diverses configurations permet de répondre &
certaines questions se rapportant a la situation initiale.

Exemple

Supposons qu’a la rentrée vous vous joignez & une nouvelle classe. Vous obser-
vez que certains éléves se connaissent et d’autres pas. Une maniére synthétique
de présenter cette situation est de la modéliser ainsi :

— chaque éléve est repré- Anna Bruno  Carole Eric
senté par un point
— deux éléves qui se
connaissent sont reliés
par un segment. Bob Pierre Diane Ryan

John est ami avec Johanna, Jean et Jeanne; Joe I’est avec Jeanne et Johanna;
Jean et Johanna s’aiment 1’'un 'autre.

Dessiner un digraphe (c’est-a-dire un graphe dont les arétes sont orientées)
illustrant les relations entre John, Johanna, Jean, Jeanne et Joe.
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1.5 Dessiner le graphe correspondant a 1’arbre généalogique suivant :

John
|
Joe Jean Jeanne Jules
Jenny Marie Julie Julia
1.6 Les serpents mangent les grenouilles et les oiseaux mangent des araignées;

les oiseaux et les araignées mangent tous deux des insectes. Les grenouilles
mangent des escargots, des araignées et des insectes.

Dessiner un digraphe représentant le comportement alimentaire de ces préda-

teurs.
1.7 Voici le plan d’un logement :
salon
bureau ‘ séjour ‘ entrée
billard cuisine ‘ salle & manger

Schématiser par un graphe le plan de circulation de ce logement.
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Réponses

1.1 P Q
S

N

5 sommets 7 arétes
sommet | P | Q| R |S|T
degré 214121133

1.2 A-C—-B—-D—-E—-A ou A E—-D—=B—=C—=A

Le second itinéraire correspond au premier itinéraire en sens inverse.

1.3 1) Les sommets correspondant aux atomes de carbone sont de degré 4 et
ceux correspondant aux atomes d’hydrogéne de degré 1.
2) H
H—C—H
110 1]
SRR A
H H H H H H H
butane isobutane
3) H
H—C—H
H H
H—C—C—C—H
H H
H—C—H
H
neopentane
14 John
Jeanne o Jean
Joe Johanna
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1.5 John

Jenny Marie Julie
1.6 Grenoullles
Serpents / \. Escargots
Insectes 0 e Araignées
Olseaux
1.7 salon
bureau ——————— séjour ———————— entrée
billard cuisine — salle & manger
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2.1

2.2

Concepts élémentaires

Définitions

Un graphe G = (V;E) est la donnée :

— d’un ensemble fini V dont les éléments sont appelés les sommets (vertices en
anglais) de G

— d’une famille E de paires non ordonnées de sommets de V (non nécessairement
distincts) appelés les arétes (edges en anglais) de G.

On utilise le terme « famille » pour signifier une collection d’éléments dont cer-

tains peuvent apparaitre plusieurs fois. Par exemple, {a;b;c} est un ensemble,

mais {a;a;b;c;a;c} ne lest pas; c’est une famille dans le sens ci-dessus.

Exemples
1) u z 2) u z
v w (EU w
V=Au;v;w;z} V=A{u;v;w;z}
E = {uv;uw;vw;wz} E = {uv;vv;vv;vw;vw;vw;uw; uw; wz}

Ecrire I’ensemble des sommets et la famille des arétes des graphes suivants :

1) Syduey 2) u 3)
| ; ; 1 3
oy 5 6

Brisbane Melbourne

Dessiner les graphes suivants :
1) v={0;0;0;A} E={00;00;0A;0A}
2) V={A;B;C;D} E=92
3) V={1;2;3;4;5;6;7;8} E={12;22;23;34;35;67;68;78}

Deux sommets u et v d'un graphe sont dits voisins si uv est une aréte de G.

Un graphe est dit simple s’il ne contient ni arétes multiples reliant deux sommets,
ni boucles.

Ainsi, le graphe de exemple 1) est simple, alors que celui de 'exemple 2) ne Uest
pas.

On appelle ordre d’un graphe G = (V; E) le nombre de ses sommets; on le note
VI
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2.3 On considére les graphes suivants :

1)1 2 2) x 3)
U
3 4 w 4
5) 6 w v z
v z

4) A B 5) 8

° ° 5

6 ]3 1 2 3 4 6 7

Parmi ces graphes, lesquels
1) contiennent des arétes multiples?
2) contiennent une boucle ?

3) sont simples ?

Un sous-graphe G’ d’un graphe G est un graphe tel que chaque sommet et
chaque aréte de G’ soient un sommet et une aréte de G.

Exemple

G’ est un sous-graphe de G*, mais pas de G**.

2.4 Soit G le graphe étiqueté suivant :
u v
w
z

Lesquels de ces graphes sont des sous-graphes de G 7

D . D) b0y i
4) u 'Z 5) u v
y
v w w V4
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2.5

Degré des sommets

Soit G = (V; E) un graphe. Le degré d’'un sommet = € V est le nombre d’arétes
de G contenant x; on le note deg(z).

On convient que, lorsqu’il y a une boucle, elle contribue pour 2 (plutdt que 1) au
degré de z.

Un sommet de degré 0 est dit isolé et un sommet de degré 1 une extrémité du
graphe.

Soit G = (V;E) un graphe d’ordre n. A chaque sommet x;, on peut faire corres-
pondre son degré di. Quitte & renuméroter les sommets de G, on peut toujours les
ordonner de facon a ce que la suite des degrés correspondants soit dans un ordre
décroissant. La suite (dy, ..., d,) ordonnée par ordre décroissant s’appelle la liste
des degrés du graphe G. On dit alors que le graphe G est de type (di,...,d,).

Exemples

1) 2) 3) . R

v w

Dans les exemples 1) et 2) ci-dessus, chacun des graphes a deux sommets de
degré 1 et trois sommets de degrés 2. Dans I'exemple 3), il y a un sommet de
degré 1, un de degré 3, un de degré 6 et un de degré 8.

La liste des degrés des deux premiers graphes est donc (2,2,2,1,1) et celle du
troisiéme graphe est (8,6,3,1).

Pour chacun des graphes de I'exercice 2.3, donner
1) les degrés de tous les sommets;

2) la liste des degrés.

Lemme des poignées de mains

La somme des degrés de tous les sommets d’un graphe G = (V;E) est égale a
deux fois le nombre de ses arétes :

S deg(a) = 2[E

eV

Preuve Chaque aréte du graphe incrémente de deux la somme des degrés.
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2.6

2.7

2.8

2.9

Ecrire la liste des degrés de chacun des graphes suivants :

Veérifier le lemme des poignées de mains pour chacun de ces graphes.

Est-il possible de relier 15 ordinateurs de sorte que chaque appareil soit relié avec
exactement trois autres ?

Indication : appliquer le lemme des poignées de mains.

Montrer que dans un graphe, le nombre de sommets de degré impair est pair.

Indication : Soit G = (V;E) un graphe. Notons P I’ensemble des sommets de degré pair et I

Pensemble des sommets de degré impair. Alors Z deg(z) = Z deg(z) + Z deg(x).
z€V zeP z€l

1) Construire un graphe tel que sa liste des degrés soit (4,3,2,1).
2) Est-il possible de construire un graphe tel que sa liste des degrés soit (5,4,3,2,1) ?

Isomorphisme de graphes

Dans chacune des lignes suivantes, deux des graphes sont identiques et le troisiéme
est différent. Identifier I'intrus.

1) U U v U v
x
w Z w z w 2
2)
w
u U
woov oz voow oz z v u
3) u v 2 w z w
z w u v u v

Théorie des graphes : concepts élémentaires 2.4



2.11

Considérons les deux graphes suivants :

gaz eau électricité gaz B électricité
A B C A eau C

Ces deux graphes ne sont pas identiques, puisque le gaz et 1’eau sont reliés dans
le second, mais pas dans le premier. Pourtant, ils ont 'air trés semblables : en
permutant eau avec la lettre B, on passe d’un graphe a 'autre.

De la méme maniére, dans les graphes suivants :
G H
u v U
v
w
z z w
on peut re-étiqueter les sommets de G pour obtenir le graphe H.

G—H
Ur— =z
Vv w
wrH——v
Z U

Notons que

— les deux arétes uv dans G correspondent aux deux arétes zw dans H;
— l'aréte uw dans G correspond a 'aréte zv dans H;

— la boucle en w dans G correspond & la boucle en v dans H;

etc.

Deux graphes étiquetés G et H sont dits isomorphes! s’il existe une bijection
entre les sommets de G et ceux de H de telle sorte que le nombre d’arétes joignant
chaque paire de sommets de G soit égal au nombre d’arétes joignant les paires
correspondantes de sommets de H.

En explicitant une bijection entre les sommets, montrer que les graphes suivants
sont isomorphes.

a b t

1. Ce terme est construit & partir de deux mots grecs : icog et popp1 qui signifient « méme »
et « forme ». Il veut donc dire avoir la méme forme.
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2.12 En explicitant une bijection entre les sommets, montrer que les graphes suivants
sont isomorphes.
1 2 A

s

5 4
2.13 En étiquetant convenablement les sommets, montrer que les graphes suivants sont
isomorphes.
2.14 Expliquer pourquoi les deux graphes ne sont pas isomorphes.
2.15 Parmi les quatre graphes étiquetés suivants, il y en a deux qui sont identiques,

un qui est isomorphe aux deux précédents et le dernier qui n’est pas isomorphe a
aucun des autres. Identifiez-les.

3
1 2 1 4 3 1 2
A 5 4
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Réponses

2.1

2.2

2.3
24

2.5

2.6

2.7
2.10

2.11

2.12

2.15

1) Posons B = Brisbane, M = Melbourne, P = Perth et S = Sydney.
V={B;M;P;S} E ={BM;BP;BS; MP;MS;PS}

2) V=Au;v;w;z;y;z} E = {uv;uw;vw;vw;zy}

3) V={1;2;3;4;5,;6} E={12;22;23;24;24;45;46}

T 9 I 3) -
VAN
1 2 6 7
4 [ d [ J
A o D C 5
1) graphes 1) et 5) 2) graphe 3) 3) graphes 2) et 4)

graphes 1), 2) et 4)

1) deg(1) = deg(2) = deg(5) = deg(6) =1, deg(3) = deg(4) =4
(4,4,1,1,1,1)
2) deg(v) = deg(w) = deg(z) = deg(y) = deg(z) = 4
(4,4,4,4,4)
3) deg(u) = deg(v) = 3, deg(w) = deg(z) =1
(3,3,1,1)
4) deg(A) = deg(B) = deg(C) = deg(D) =0
(0,0,0,0)
5) deg(1) = deg(5) = 1, deg(2) = deg(4) = deg(6) = deg(7) = deg(8) = 2,

deg(3) = 4 (4,2,2,2,2,2,1,1)

1) (4,4,2,1,1,1,1,1,1)  44+4+2+1+1+1+1+1+1=2-8
2) (4,4,4,4,4) 4+4+4+4+4=2-10

3) (5,5,4,4,3,1,0) 5+5+4+4+3+1+0=2-11

non

1) 3¢ graphe 2) 2¢ graphe 3) 3¢ graphe

ar+—r
br—t
c—u
d— s

1— A
2— B
3—C
4+—D
5— E
6 —F

Les premier et troisiéme graphes sont identiques; le deuxiéme graphe n’est pas
isomorphe aux autres.
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3.1

Chemins & Arbres

Chemins

Chaines

Dans un graphe G, une chaine allant de a & b est une liste ordonnée
9Ty ... Tpn_1 T, de n + 1 sommets de G ol @ = xp, b = x, et ou chaque
paire z; 1 x; (1 <7 < n) est une aréte de G.

Le nombre n des arétes qui composent la chaine est sa longueur.

Remarque On ne demande pas que dans une chaine tous les sommets ou
toutes les arétes soient différents.

v w

Z Y

Dans le graphe ci-dessus, uvw x y w v z zy est une chaine de longueur 9 qui va
du sommet v au sommet y. L’aréte v w est incluse deux fois, de méme que les
sommets v, w, y et z.

Si a = b, on parle d'une chaine fermée, sinon d’'une chaine ouverte.

Chemins

Un chemin est une chaine telle que chaque aréte de celle-ci soit parcourue une
seule fois.

Un chemin simple est un chemin dont chaque sommet est traversé une seule
fois (excepté peut-étre le premier et le dernier).

Considérons le graphe suivant :

u e i d VA

v Y
Les chaines ae fad et abcde sont-elles des chemins? des chemins simples ?
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3.2

Remarque Comme l'illustre I'exercice 3.1, un chemin peut passer plusieurs
fois par le méme sommet.

Il est facile de montrer que tout chemin allant d’un sommet & un autre peut
étre « simplifié » en un chemin simple. Pour cela, il suffit de supprimer les
détours.

Connexité

Un graphe est connexe si toute paire de sommets peut étre reliée par un
chemin.

Les graphes suivants sont-ils connexes ?
1) o 2) o

Si un graphe G n’est pas connexe, il se décompose en réunion de sous-graphes
connexes, appelés composantes connexes de G.

Le second graphe de l'exercice 3.2 admet, par exemple, deux composantes
connexes.

Théoréme Tout graphe connexe a n sommets posséde au moins n— 1 arétes.
Démontrons le résultat par récurrence sur le nombre de sommets n.

Pour n =1 ou n = 2, le résultat est évident.

Supposons a présent n > 3 et le résultat vrai pour les graphes d’ordre < n—1.
Soit G = (V;E) un graphe connexe d’ordre n. Distinguons deux cas.

1) Supposons qu’il existe un sommet de degré 1.
Soit G’ le sous-graphe de G obtenu par suppression d’un sommet de
degré 1 et de l'aréte adjacente a ce sommet. Alors G’ est un graphe
connexe avec n — 1 sommets. Vu ’hypothése de récurrence, il posséde
au moins (n — 1) — 1 arétes. Il en résulte que G, qui posséde une aréte
supplémentaire, a au moins n — 1 arétes.

2) Supposons qu’il n’existe pas de sommet de degré 1.
Vu la connexité de G, il ne peut pas y avoir de sommet isolé, de sorte
que tous les sommets sont de degré > 2.
Le lemme des poignées de mains implique 2 |E| = Zdeg(z) > 2n, d’ou

zev
'on conclut que le nombre d’arétes |E| > n > n — 1.
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3.3

3.4

Cycles

Un cycle est un chemin simple fermé.

Un graphe ne contenant pas de cycle est acyclique.

Déterminer les cycles de longueur 1, 2 et 3 dans le graphe suivant :
€2

a(x___ >

€4 €5

Proposition Si dans un graphe G tout sommet est de degré > 2, alors G
posséde au moins un cycle.

Preuve La preuve utilise un algorithme de marquage. Initialement, tous les
sommets sont non marqués. Un sommet x; est arbitrairement marqué.

L’algorithme construit une séquence x1,Ts,...,x; de sommets marqués en
choisissant arbitrairement pour x;;,; un sommet non marqué adjacent a x;.

L’algorithme s’arréte lorsque x; ne posséde plus de voisin non marqué. Puisque
ce sommet est degré > 2, il posséde, outre z;_;, un autre voisin marqué ;.

Alors zx;xj41 ... Tp—12) est un cycle.
Corollaire Un graphe acyclique posséde au moins un sommet de degré < 1.
Théoréme Tout graphe acyclique a n sommets posséde au plus n—1 arétes.

Preuve Démontrons le résultat par récurrence sur le nombre de sommets n.
Pour n =1 ou n = 2, le résultat est évident.
Supposons a présent n > 3 et le résultat vrai pour les graphes d’ordre < n— 1.

Soit G = (V; E) un graphe acyclique d’ordre n. D’aprés le corollaire, il existe
un sommet x de degré < 1. Soit G’ le sous-graphe de G obtenu par suppression
du sommet x et de 'éventuelle aréte adjacente & ce sommet. Alors G’ est un
graphe acyclique avec n — 1 sommets. Vu ’hypothése de récurrence, il posséde
au plus (n—1) — 1 arétes. Il en résulte que G, qui posséde une éventuelle aréte
supplémentaire, a au plus n — 1 arétes.

Arbres

Un arbre est un graphe connexe acyclique.

Quel est le nombre d’arétes d’'un arbre a n sommets ?
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Remarque Un arbre est nécessairement simple, puisqu’il est acyclique.

Exemple Les trois graphes suivants sont des arbres :
1) 2) 3)

La réunion ensembliste des graphes 1), 2) et 3) est un graphe qui, bien que
n’admettant pas de cycles, n’est pas un arbre, car il n’est pas connexe. On
I’appelle une forét.

Remarque Un sous-graphe d’un arbre peut étre une forét; un sous-graphe
connexe d’un arbre T est un sous-arbre de T.

Propriétés & caractérisations des arbres

La connexité d’un graphe implique que deux sommets quelconques sont tou-
jours reliés par au moins un chemin.

Le fait qu’il n’y ait qu’un seul chemin entre deux sommets distincts quel-
conques caractérise les arbres, comme 1’énonce le théoréme suivant.

Théoréme Un graphe simple est un arbre si et seulement si deux sommets
distincts quelconques peuvent étre reliés par un chemin unique.

Preuve

1) Soit T un arbre. Supposons — par I'absurde — qu’il existe deux sommets
distincts u et v qui puissent étre reliés par deux chemins distincts.

Leur réunion va contenir un cycle (et probablement d’autres arétes), ce
qui est en contradiction avec le fait que T est acyclique.

2) Réciproquement, supposons que deux sommets distincts quelconques d’un
graphe G soient toujours reliés par un chemin unique. Alors GG ne peut
pas contenir de cycle, car deux sommets distincts d’un cycle sont toujours
reliés par deux chemins distincts. Donc G est un arbre.
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3.5

3.6

Théoréme Soit G un graphe a n sommets. Alors les propriétés suivantes
sont équivalentes et peuvent étre prises comme la définition d’un arbre.

1) G est connexe et acyclique.

2) G est un graphe connexe a n — 1 arétes.

3) G est connexe et la suppression de toute aréte le déconnecte.
4) G est un graphe acyclique a n — 1 arétes.

5) G est acyclique et 'ajout de toute aréte le rend cyclique.

Preuve
1) = 2) G étant connexe et acyclique, il posséde exactement n — 1 arétes.

2) = 3) Pour étre connexe, un graphe & n sommets doit posséder au moins
n — 1 arétes. En supprimant une aréte de G, il n’en reste plus que n — 2.

3) = 4) Si, par 'absurde, G possédait un cyclique, la suppression d’une aréte
ne saurait le déconnecter ; par suite, G est acyclique. Puisqu’il est égale-
ment connexe, il posséde donc exactement n — 1 arétes.

4) = 5) Pour étre acyclique, un graphe a n sommets doit posséder au plus
n — 1 arétes. L’ajout d’une aréte a G donne un graphe a n arétes.

5) = 1) Considérons deux sommets z et y de G.
— Si laréte x y existe, alors ¢’est un chemin de x a y.
— Sinon, ajoutons 'aréte z y & G : nous créons alors un cycle de la forme
xa ... wyz. Ceci montre 'existence du chemin xa ... wyentre z et y

dans G.
G est donc bien un graphe connexe.

Montrer que les conditions suivantes sont équivalentes :
1) G est connexe et a un seul cycle.
2) G est connexe et le nombre de sommets est égal au nombre d’arétes.
3) I existe une aréte e de G telle que G — e est un arbre.

Prouver qu’'un graphe de n sommets et n — 1 arétes qui a au moins un cycle a
plus d’'une composante connexe.

Connexion minimale

Arbres de recouvrement d’un graphe

On appelle arbre de recouvrement d’un graphe G un sous-graphe de G qui
contient tous les sommets de G et qui est un arbre.

En général, comme on le voit ci-dessous, un graphe peut avoir plusieurs arbres
de recouvrement.

v w v w v w v w
Z Yy x zZ Yy x A Yy T A Y x
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Remarque Si le graphe n’est pas connexe, il n’existe pas d’arbre de recou-
vrement, puisqu’un arbre est connexe.

Théoréme Tout graphe connexe contient un arbre de recouvrement.

Preuve Soit G un graphe connexe.

Considérons I'ensemble ¥ de tous les sous-graphes connexes de G contenant
tous les sommets de G. L’ensemble ¥ est non vide, vu que G € W.

Soit T I'un des éléments de ¥ possédant un nombre minimum d’arétes.

T est acyclique : sinon, T contiendrait un cycle et la suppression d’une aréte
quelconque de ce cycle donnerait un sous-graphe appartenant a W ayant une
aréte de moins que T, ce qui contredirait le choix de T.

Vu que T est connexe et acyclique, il constitue un arbre de recouvrement de G.

3.7 Trouver un arbre de recouvrement du graphe suivant :
U1 V2
U3
Uy
Vs Vs
3.8 Trouver un arbre de recouvrement du graphe suivant :
U1 ) CX]

N

Us I Uy
U7 Us Us
3.9 Dessiner les 8 arbres de recouvrement du graphe :
a b
d c

Le probléme de la connexion minimale

Supposons que différents objets (villes, centres de distribution, prises de cou-
rant électrique, etc.) doivent étre reliés entre eux de maniére minimum (cela
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peut étre en distance, en temps, en cout ou selon d’autres critéres), de sorte
qu’il existe toujours un « chemin » possible entre deux quelconques de ces
objets.

Il est facile de traduire cette situation par un graphe G :

— L’ensemble des sommets de G est ’ensemble des objets. Une aréte de G
correspond a une liaison directe possible entre deux sommets.

— A chaque aréte on fait correspondre un nombre positif, appelé poids, qui
peut représenter une distance, un temps, un coft, etc.

Nous obtenons ainsi ce que 'on appelle un graphe pondéré.

Le probléme consiste alors a trouver un arbre de recouvrement de G de poids
minimum.

Exemple Six ordinateurs Cq, Cs, ..., Cg doivent étre reliés par un réseau de
transmission a fibre optique. Le cott (unité = 10 000 fr.) de chaque liaison
possible est donné par le tableau suivant :

| [Ci G C3 Cy C5 G|

Cy|| — 10 14 18 13 8
Cy|l10 — 3 16 5 12
Cy |l 14 3 7 17 11
Cyf|18 16 7 — 9 4
Cs||13 5 17 9 — 6
Ce || 8 12 11 4 6

Il faut trouver le réseau le moins cher possible tel que toute paire d’ordinateurs
puisse communiquer, que ce soit directement ou a travers d’autres ordinateurs.

Le graphe pondéré par les cotits est le suivant :

Cy
k) 0
Ce Cs
12
3 o \&
(@2 © w
g )
7
17
C5 C3
9 1
Cy

Algorithme de Kruskal

Cet algorithme est di au mathématicien tchéque Joseph B. Kruskal qui I'a
utilisé le premier en 1956.
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Soit G = (V; E) un graphe connexe et pondéreé.
1) Trier les arétes de E par ordre croissant de poids : eq,. .., €.
2) Poser F = @.

3) Pour tout i allant de 1 a n, ajouter 'aréte e; a F, pour autant que le
graphe (V;F) qui en résulte demeure acyclique.

Par construction et en vertu de la propriété 5) du théoréme de la page 3.4, on
obtient ainsi un arbre de recouvrement de poids minimum.

Exemple (suite) Appliquons l'algorithme de Kruskal aux six ordinateurs
reliés par un réseau de transmission a fibre optique.

Ordonnons les arétes du graphe par ordre croissant de poids :
3,4,5,6,7,8,9,10,11,12,13,14, 16,17, 18.

L’application de I'algorithme donne F = {3;4;5;6;8}.

En effet, I'ajout de l'aréte de poids 7 créerait le cycle Cy, C3C, CgCsCs. A
partir de I'ajout de l'aréte de poids 8, tous les sommets sont reliés, c’est-a-dire
que le graphe est connexe, de sorte qu’il constitue un arbre et que 'ajout de
toute aréte supplémentaire crée un cycle.

Le poids de 'arbre est 3 +4 4+ 5+ 6 + 8 = 26 : le réseau cherché peut étre
construit, selon 'arbre trouvé, au prix de 260 000 fr.

Algorithme de Prim

Bien que 'algorithme de Kruskal puisse étre facilement appliqué « a la main »
quand le graphe est petit, il n’est pas particuliérement approprié¢ a une implé-
mentation efficace dans un ordinateur. En effet, il faut arranger les arétes dans
I’ordre de poids croissant et surtout controler qu’aucun cycle n’a été créé.

L’algorithme de Prim, que I’on doit a I'informaticien Robert C. Prim en 1957,
permet de surmonter ces difficultés.
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Soit G = (V; E) un graphe connexe et pondéreé.
1) Marquer arbitrairement un sommet.
2) Poser F = @.

3) Tant qu’il existe un sommet non marqué, choisir une aréte de poids
minimum joignant un sommet marqué a un sommet non marqué ; ajouter
cette aréte a F et marquer ce nouveau sommet.

Par construction et en vertu de la propriété 3) du théoréme de la page 3.4, on
obtient ainsi un arbre de recouvrement de poids minimum.

Exemple (fin) Appliquons l'algorithme de Prim aux six ordinateurs reliés
par un réseau de transmission a fibre optique, en marquant initialement le
sommet Cy :

3.10 Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de recou-
vrement minimum pour le graphe pondéré suivant :

Uy 8 U2 1 U3

11 U7 4

Ug Us 5 Uy
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3.11

3.12

3.13

Utiliser les algorithmes de Kruskal et de Prim pour trouver un arbre de recou-
vrement minimum pour le graphe pondéré suivant :

U1 1 (]

Le tableau suivant donne les distances (en centaines de milles) entre six villes
européennes.

Berlin Londres Madrid Moscou Paris Rome
Berlin 0 7 15 11 7 10
Londres 7 0 11 18 3 12
Madrid 15 11 0 27 8 13
Moscou 11 18 27 0 18 20
Paris 7 3 8 18 0 9
Rome 10 12 13 20 9 0

Trouver un arbre de recouvrement minimum reliant chacune de ces villes :
1) par lalgorithme de Kruskal ;
2) par l'algorithme de Prim.

Déterminer tous les graphes de recouvrement minimaux du graphe suivant :

2

1 ¢ 3 2

) 1

5 0 1 3
1 2
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Réponses

3.1

3.2

3.3

3.4
3.7

3.8

3.9

3.10

ae fadn’est pas un chemin allant de v & z.
abcde est un chemin allant de v & u qui n’est pas simple.

1) oui 2) non

e1 est le seul cycle de longueur 1.
eses est le seul cycle de longueur 2.

eseqes et eseqes sont les seuls cycles de longueur 3.

Remarquons que ezeqe; n’est pas un cycle puisqu’un sommet est répété.

n—1
U1 (%
U3
U4
Us Vg
U1 V2 U3
Us Vg V10 21
(s Vg Vs
a b a. b a
o———0
d c d c d
a b a b a
d d d
vy 8 V2 1 U3
2
9 U7 4
o———O
Vs Us 5 Uy
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3.11

3.12 Moscou

Londres

Madrid
Rome
3.13 5 5

>

1 2 1 3 2
[ ]

1 3 1
>
4 2 4 2
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4 Graphes eulériens

Probléme de ’explorateur

Un explorateur souhaite explorer toutes les routes entre un certain nombre de
villes. Peut-on trouver un itinéraire qui passe par chaque route une seule fois?

Ce probléme se traduit aisément dans le langage des graphes : peut-on trouver
un chemin passant une et une seule fois par chaque aréte d'un graphe?

Etant donné que cette question est étroitement lice au probléme des ponts de
Konisberg et que Euler y est historiquement associé, on pose les définitions
suivantes.

Un chemin d’un graphe G est appelé chemin eulérien s’il passe une et une
seule fois par chaque aréte du graphe.

Un graphe G est un graphe eulérien s’il admet un chemin eulérien fermé.

Un graphe G est semi-eulérien s’il n’est pas eulérien et s’il admet un chemin
eulérien ouvert.

Remarque Un graphe eulérien ou semi-eulérien est nécessairement connexe.

Exemples Les trois graphes ci-dessous sont respectivement eulérien, semi-
eulérien et non eulérien.

1) 2) 3)

Théoréme Un graphe est eulérien si et seulement si il est connexe et tous
ses sommets sont de degré pair.

Preuve Supposons qu'un graphe G soit eulérien. Il existe alors un chemin
fermé ¢ parcourant une et une seule fois chaque aréte.
Le graphe G est donc connexe, puisque c relie tous les sommets entre eux.

Considérons un sommet z. Lors du parcours du cycle, & chaque fois que nous
passons par lui, nous y arrivons et nous en repartons par 2 arétes non encore
parcourues. Le sommet z est donc de degré pair.

Réciproquement, considérons un graphe G connexe dont tous les sommets sont
de degré pair. Nous allons montrer par récurrence sur le nombre d’arétes que
G est alors eulérien.

Si G se réduit a un unique sommet isolé, il est évidemment eulérien.
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4.1

4.2

Sinon tous les sommets de G sont de degré > 2. La proposition de la page 3.3
implique qu’il existe un cycle ¢ sur G.

Considérons le graphe partiel H constitué des arétes en dehors du cycle . Les
sommets de H sont également de degré pair, le cycle contenant un nombre pair
d’arétes incidentes pour chaque sommet. Par hypothése de récurrence, chaque
composante connexe H; de H est un graphe eulérien et admet donc un chemin
eulérien fermé ;.

Le cycle ¢, représenté en trait tillé, définit
4 composantes connexes pour le graphe H,
dont 2 sommets isolés pour lesquels leur cycle
eulérien est sans aréte.

Les fleches symbolisent 'opération de fusion
des 2 cycles non vides avec .

Pour reconstruire un chemin eulérien fermé sur G, il nous suffit de fusionner
le cycle ¢ avec les différents cycles ;. Pour cela, on parcourt le cycle ¢ depuis
un sommet arbitraire ; lorsque ’on rencontre pour la premiére fois un sommet
appartenant a H;, on lui substitue le chemin eulérien fermé ¢;. Le chemin
obtenu est un chemin eulérien fermé pour G, le cycle ¢ et les chemins ¢;
formant une partition des arétes.

Corollaire Un graphe est semi-eulérien si et seulement si il est connexe et
s’il a exactement deux sommets de degré impair.

Dans ce cas, le chemin eulérien ouvert joint ces deux sommets.

Justifier que les graphes des exemples de la page précédente sont respective-
ment eulérien, semi-eulérien et non eulérien.

Parmi les graphes suivants, déterminer ceux qui sont eulériens ou semi-eulériens
et préciser un chemin correspondant.

1) e b 2) a 3w v
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4.3 Déterminer si les graphes suivants sont eulériens, semi-eulériens ou ni 'un ni

I'autre.
1) 2) 3)
4.4 Déterminer si les graphes suivants sont eulériens, semi-eulériens ou ni 'un ni
I'autre.
1) 2)
3) 4)
4.5 Déterminer si les graphes suivants sont eulériens, semi-eulériens ou ni 'un ni
I'autre.
1) 2) 3)
4) 5) 6)
7) 8) 9)
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4.6 On représente ci-dessous la ville de Dreamtown avec sa riviére et ses trois iles.

P e e el G e G o el R e e
~ 4 - . N4 . ™ ™ ‘o A po e
e ~ o e oo My o~ > P e

Est-il possible de parcourir chaque pont une fois et une seule fois lors d’une
balade dans cette ville?

Algorithme de Fleury

Il existe un algorithme pour déterminer les chemins eulériens dans un graphe
eulérien. L’idée est de parcourir le graphe en supprimant toutes les arétes
traversées, mais en évitant autant que possible de rendre le graphe non connexe.

Une aréte ab d’'un graphe G est appelée un pont si ab est I'unique chemin
entre les sommets a et b.

Dans un graphe eulérien, I'algorithme de Fleury permet toujours d’obtenir

un chemin eulérien fermé :

— Commencer a partir de n’importe quel sommet et parcourir les arétes arbi-
trairement en respectant les régles suivantes :

— Supprimer les arétes parcourues; au cas ol apparait un sommet isolé, sup-
primer ce sommet,.

— A chaque étape, n’utiliser un pont que s’il n’y a pas d’autre alternative.

4.7 Utiliser 'algorithme de Fleury pour trouver un chemin eulérien ouvert dans le
graphe suivant :
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4.8 Utiliser I’algorithme de Fleury pour trouver au moins un chemin eulérien fermé
dans le graphe suivant :
départ

4.9 Utiliser I’algorithme de Fleury pour trouver au moins un chemin eulérien fermé

dans le graphe suivant :
14. 15

L
13 16

4.10 Vous étes un agent de police et la carte des routes de votre secteur est repré-
sentée ci-dessous.

0

Est-il possible de patrouiller sur chacune de ces routes sans parcourir aucune
d’elles plus d’une fois ?
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Réponses

4.2 1) semi-eulérien acbdaeb
2) ni eulérien, ni semi-eulérien
3) eulérien  wvzuyzrywrvwu
4.3 1) eulérien 2) semi-eulérien 3) ni eulérien, ni
semi-eulérien
4.4 1) eulérien 2) ni eulérien, ni semi-eulérien
3) eulérien 4) ni eulérien, ni semi-eulérien

4.5 1) semi-eulérien 2) semi-eulérien

3) ni eulérien, ni semi-eulérien 4) eulérien

5) semi-eulérien 6) ni eulérien, ni semi-eulérien

)
)
)
7) semi-eulérien 8) ni eulérien, ni semi-eulérien

9) semi-eulérien

4.6 oui
4.7
g f
AN
1 n
aN]] , ™| e
k l
4.8 _ i o
a
k|l h e
\ 4 g A
b c d
4.9
4.10 Oui, mais sans revenir au point de départ : graphe semi-eulérien
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5 Graphes hamiltoniens

Probléme du voyageur

Au chapitre précédent, nous avons examiné et résolu le probléme de ’existence
d’un chemin passant une et une seule fois par chacune des arétes d’un graphe
donné. Nous allons analyser le probléme correspondant pour les sommets :
dans un graphe donné, existe-t-il un chemin qui passe une et une seule fois par
chacun de ses sommets ?

Nous retrouvons la la forme élémentaire du probléme du voyageur de com-
merce. De maniére surprenante, ce probléme s’avére beaucoup plus difficile
que celui de I'explorateur.

Vers 1850, le mathématicien William Hamilton (1805-1865) a tenté de popu-
lariser, malheureusement sans succés commercial, un casse-téte qu’il a appelé
« the icosian game ». L’idée de ce jeu est illustrée dans le graphe ci-dessous.

R

N O NN
)

v T

Le graphe modélise l'itinéraire d’un voyage autour de la Terre ou 20 villes
doivent étre visitées. Partant de I'une des vingt villes, le voyageur doit y revenir
en ayant visité chaque ville une seule fois. Plus précisément, le jeu consiste a
imposer les cinq premiéres villes a visiter et a demander au joueur de compléter
Iitinéraire. Par exemple, si I'on commence par les villes BCPNM, on peut
remarquer qu’il y a exactement deux voyages réalisant les conditions imposées :

BCPNM DFKLTS RQZXW VJHGB
BCPNM DFGHX WVJKLT SRQZB

Un cycle hamiltonien d’un graphe G est un cycle qui contient chaque sommet
de G.

Un graphe est hamiltonien s’il contient un cycle hamiltonien.

Un chemin hamiltonien est un chemin simple ouvert qui contient chaque
sommet de G.

Un graphe non hamiltonien est semi-hamiltonien s’il contient un chemin
hamiltonien.
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5.1

5.2

Remarque Ajouter ou enlever des boucles ou des arétes multiples ne modifie
pas le caractére hamiltonien d’un graphe, puisque 'on peut les ignorer en
cherchant un chemin qui visite chaque sommet.

Exemples Les trois graphes ci-dessous sont respectivement hamiltonien, semi-
hamiltonien et non hamiltonien.

1) o 3 2) . 3)

Le graphe ci-dessous est hamiltonien ; on le voit en considérant, par exemple,
le cycle hamiltonien dessiné en gras :

Trouver un autre circuit hamiltonien dans le « icosian game ».

Montrer que le graphe ci-dessous est hamiltonien en exhibant un cycle hamil-
tonien.

A premiére vue, le probléme de savoir si un graphe est hamiltonien semble trés
proche de celui de savoir si un graphe est eulérien. On pourrait espérer résoudre
ce probléme d’une maniére aussi satisfaisante que pour les graphes eulériens.
Dans le chapitre précédent, nous avons formulé un critére pour 'existence d’un
chemin eulérien — le degré de chaque sommet doit étre pair — et nous avons
méme proposé, lorsque cette condition est vérifiée, un algorithme permettant
de construire le chemin cherché.

Malheureusement, la solution du probléme correspondant pour un cycle hamil-
tonien est beaucoup plus difficile. En fait, dans le cas d’un graphe quelconque,
il n’y a toujours pas de critéres, c’est-a-dire de conditions nécessaires et suffi-
santes assurant l’existence d’un cycle ou d’un chemin hamiltonien. Cela reste
I'un des problémes majeurs non résolus de la théorie des graphes.
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5.3

Cependant, nous possédons des résultats partiels de deux types. Les uns donnent
des conditions nécessaires, c’est-a-dire des conditions que tout graphe doit sa-

tisfaire pour étre hamiltonien ; les autres constituent des conditions suffisantes,

c’est-a-dire des conditions qui assurent qu’'un graphe est hamiltonien.

Conditions suffisantes pour qu’un graphe soit hamiltonien

Un graphe est complet lorsque deux sommets quelconques sont reliés par
exactement une aréte. Le graphe complet d’ordre n se note K,,.

Exemples K, Ks

Trouver un cycle hamiltonien dans un graphe complet K, (n > 2) est trés
simple. On peut procéder a partir de n’importe quel sommet. Comme toutes
les arétes possibles sont présentes, on peut toujours passer de n’importe quel
sommet & n’importe quel autre directement. La construction se fait de proche
en proche.

1) Quel est le nombre d’arétes du graphe K,, 7

2) Combien de cycles hamiltoniens distincts y a-t-il dans K, 7

La plupart des théorémes qui expriment une condition suffisante pour qu’un
graphe G soit hamiltonien sont de la forme : si G a « assez » d’arétes, alors G
est hamiltonien.

Théoréme d’Ore (1960)

Soit G un graphe simple avec n > 3 sommets. Si deg(u) + deg(v) > n pour
toute paire de sommets u et v non voisins, alors G est hamiltonien.

Preuve Par ’absurde, supposons le théoréme faux.

Il existe donc un graphe non hamiltonien de n sommets satisfaisant la condition
d’Ore : deg(u) + deg(v) > n pour toute paire de sommets u et v non voisins.

En ajoutant des arétes supplémentaires — ce qui ne perturbe pas l'inégalité
d’Ore — on peut trouver un nouveau graphe G* qui soit « & peine » non
hamiltonien dans le sens suivant : ’adjonction d’une nouvelle aréte le ren-
drait hamiltonien. Quitte & renuméroter les sommets de G*, il s’ensuit que G*
posséde un chemin v = v; ... v, = v passant par chaque sommet.
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5.4

Puisque G* est non hamiltonien, les sommets u et v ne sont pas voisins et
satisfont la condition d’Ore : deg(u) 4 deg(v) > n.

Désignons par N(u) I'ensemble de tous les sommets voisins de u et par N(v)
I’ensemble de tous les sommets voisins de v.

Siv; € N(u), alors v;—; ¢ N(v).

En effet, si ce n’était pas le cas, vy vy ... V; 1 Uy Up_ 1 VUp o ... U1 U; U1 Serait
un cycle hamiltonien dans G*, comme l'illustre la figure ci-dessous.

Ainsi, pour chaque sommet voisin de u, il existe un sommet de V — {v} non
voisin de v. Mais alors, deg(v) < (n—1) —deg(u) dans G* : en effet, parmi les
n — 1 sommets de G distincts de v, au moins deg(u) d’entre eux ne sont pas
voisins de v.

Il en résulte deg(u) 4+ deg(v) < n— 1, ce qui vient contredire 'inégalité d’Ore.

Corollaire : théoréme de Dirac (1952)

Soit G un graphe simple avec n > 3 sommets. Si deg(v) > § pour chaque
sommet, alors G est hamiltonien.

Démontrer le théoréme de Dirac & partir du théoréme d’Ore.

Exemples

1) Pour le graphe ci-contre, on a n = 6 et
deg(v) = 3 pour chaque sommet v. Le théo-
reme de Dirac s’applique donc et le graphe
est hamiltonien.

2) Dans le graphe ci-contre, on a n = 5 et w

deg(w) = 2. Le théoréme de Dirac ne s’ap-

plique donc pas.

Par contre, on a deg(u) + deg(v) > 5 pour

toute paire de sommets non voisins. Le théo-

réeme d’Ore s’applique, de sorte que le graphe

est hamiltonien.

Cet exemple montre la plus grande généralité

de la condition d’Ore.
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5.5

5.6

Conditions nécessaires pour qu’un graphe soit hamiltonien

Commencons par énoncer les régles fondées sur le fait que tout cycle hamilto-
nien doit contenir exactement deux arétes par sommet.

Proposition Pour qu’un graphe G soit hamiltonien, il faut que les régles
ci-dessous soient vérifiées.

Reégle 1 Pour tout sommet v de G, on doit avoir deg(v) > 2.

Régle 2 Si un sommet v est de degré 2, les deux arétes passant par v doivent
étre incluses dans tout cycle hamiltonien.

Régle 3 Un cycle hamiltonien ne peut pas contenir de sous-cycle ; autrement
dit, au cours de la construction d’un cycle hamiltonien, aucun cycle ne
peut étre formé avant que tous les sommets aient été visités.

Régle 4 Si, au cours de la construction d’un cycle hamiltonien, deux arétes
passant par un sommet v s’imposent, toutes les autres arétes passant par
ce sommet devront étre supprimées.

1) Montrer qu’'un cycle hamiltonien est toujours de longueur n, oun = |V| =
nombre de sommets.

Indication : utiliser le lemme des poignées de mains.

2) Justifier la régle 3 : un cycle hamiltonien ne peut pas contenir de sous-
cycle.

Indication : utiliser le résultat de I’exercice 3.5.

Expliquer pourquoi les graphes suivants ne sont pas hamiltoniens.

1) a b c 2) b e
e
f ° d a ocC he g
9 i i d !

Ces régles, qui sont des conditions nécessaires a ’existence d’un cycle hamilto-
nien, sont surtout employées quand il s’agit de montrer qu’un graphe n’est pas
hamiltonien. La stratégie consiste a essayer de construire un cycle hamiltonien
et de montrer qu’a une certaine étape, il est impossible d’aller plus loin.

Exemple Montrons que le graphe de Petersen n’est pas hamiltonien.
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Pour la commodité de la démonstration, on numé-
rote les arétes plutot que les sommets.

La stratégie consiste a essayer de construire un cycle
hamiltonien en exploitant la symétrie du graphe
pour éliminer certaines arétes. La construction en
plusieurs étapes conduira a une contradiction.
Supposons par I’absurde que le graphe soit hamilto-
nien. A cause de la régle 3, on ne peut pas prendre
toutes les arétes de 1 a 5.

Pour des raisons de symétrie, le choix de celle qui
est supprimée est sans importance. Supposons que
ce soit Iaréte 1. Les arétes 5 et 11, de méme que les
arétes 2 et 12, doivent faire partie du cycle hamil-
tonien, en vertu de la régle 2.

Une des arétes 3 ou 4 au moins (voire les deux)
doit étre incluse, sinon le sommet v serait de de-
gré 1, enfreignant la régle 1. Par symeétrie, choisis-
sons |’aréte 3.

La régle 4 stipule alors que 'on peut supprimer
I’aréte 13.

Les arétes 6 et 7 doivent étre incluses (régle 2) et
laréte 10 exclue (régle 4).

Les arétes 9 et 14 doivent étre incluses (régle 2) et
les arétes 4 et 8 exclues (régle 4).

Enfin, I'aréte 15 doit étre comprise (régle 2).

Notre construction d’un cycle hamiltonien débouche
finalement en deux sous-cycles, ce qui contredit la
régle 3. C’est pourquoi le graphe de Petersen n’est
pas hamiltonien.
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5.7

5.8

Soit v un sommet d’un graphe G. Considérons le sous-graphe G’ de G obtenu
en supprimant le sommet v ainsi que toutes les arétes de G passant par v.

Un sommet v est appelé un point d’articulation si sa suppression « décon-
necte » le graphe.

Remarquons qu’il s’agit d’'une opération analogue a celle de 'algorithme de
Fleury. De la méme maniére, on s’intéresse aux sommets qui, lorsqu’on les
supprime, rendent le graphe G’ non connexe.

Exemple Dans le graphe ci-dessous, v est un point d’articulation.

Théoréme Un graphe hamiltonien n’admet aucun point d’articulation.

Preuve La suppression d’'un sommet au cycle hamiltonien laisse tous les
autres sommets sur une méme chaine conservant la connexité de G.

Parmi les graphes suivants, déterminer ceux qui sont hamiltoniens et trouver,
le cas échéant, un cycle hamiltonien.

A 2) A 3) A B
p———4¢
E B E F
/i @ -
C B D C D C
4) A 5) 6) C
G E F
A D
/AN
C B B C B

Determmer les graphes hamiltoniens :

[
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5.9 Montrer que le graphe de Grotzsch est hamiltonien.

5.10 Donner un exemple comportant au moins six sommets de chacun des graphes

suivants :
1) un graphe hamiltonien qui n’est pas eulérien;;

2) un graphe eulérien qui n’est pas hamiltonien.

Réponses

5.1

5.2

5.3 1)

5.7 1)
2)
3)
4)
5)
6)

hamiltonien :
hamiltonien :
hamiltonien :
hamiltonien :
hamiltonien :

hamiltonien :

ABCDA
ABCDEA
AEFBCGHDA
ABCDFEA
AECFBGA
ABDCA
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6.1

Coloriage de graphes

Sans les problémes de coloriage, la théorie des graphes ne serait pas ce qu’elle
est aujourd’hui. La raison en est le célébre probléme des quatre couleurs, déja
mentionné dans 'introduction, qui a stimulé la recherche dans ce domaine au
cours du XX°¢ siécle.

Dans un graphe, on peut envisager la question du coloriage de deux maniéres :
colorier les sommets ou les arétes. On se bornera ici aux résultats de base sur
le coloriage des sommets.

Coloriage des sommets

On appelle coloriage des sommets d'un graphe G = (V;E) l'opération
qui consiste a affecter une couleur a chaque sommet de telle sorte que deux
sommets voisins ne portent jamais la méme couleur.

Si le coloriage utilise k£ couleurs, on dit que G est k-coloriable.

Le nombre chromatique de G, noté x(G), est le plus petit nombre de cou-
leurs permettant de colorier le graphe G.

Remarques

— Les définitions précédentes ne sont données que pour des graphes simples.
Les boucles doivent étre exclues, car dans tout k-coloriage les sommets aux
extrémités de toutes les arétes doivent avoir des couleurs différentes. Dans
ce cas, un sommet qui comporterait une boucle devrait avoir deux couleurs.
On exclut aussi les arétes multiples entre deux sommets, car celles-ci ne
changent rien a la nature du coloriage.

— Pour des raisons de commodité, on décrit les couleurs par des nombres
1,2,... que 'on écrit a coté des sommets concernés.

Exemples Les graphes 1) et 2) illustrent un coloriage de G avec respective-
ment 4 et 3 couleurs, alors que le graphe 3) n’est pas un coloriage de G.

1) 1 2) 3 3) 2

Le probléme le plus important est de calculer x(G).

Trouver le nombre chromatique de Ko, K3, Ky, K5 et K,,.
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6.2

6.3

6.4

6.5

Trouver le nombre chromatique du graphe cyclique C,.

Indication : distinguer les cas n pair et n impair.

Trouver le nombre chromatique d’un arbre.

En général, pour montrer que le nombre chromatique d'un graphe G donné
vaut k, il faut vérifier deux choses :

1) trouver un coloriage qui utilise k£ couleurs ;

2) montrer qu’il n’y a aucun coloriage possible avec moins de & couleurs.

Pour cela, on peut s’aider de la propriété suivante :
si H est un sous-graphe de G, alors x(H) < x(G).

On peut encore remarquer que si G a n sommets, alors x(G) < n.
Exemple 4

Déterminons le nombre chromatique du
graphe G ci-contre.

On commence par construire un coloriage avec

4 couleurs; donc x(G) < 4.
Mais G ne peut pas étre colorié avec moins de )\
4 couleurs, car G contient le graphe complet Ky ; [ N

Finalement x(G) = 4. 2 3

Déterminer le nombre chromatique du graphe suivant :

e

Déterminer le nombre chromatique pour chacun des graphes suivants :

Mol
ird B
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Applications

On peut modéliser la résolution d’un probléme de recherche opérationnelle par
un coloriage de graphe en groupant dans la méme classe des individus ou des
objets qui n’entrent pas en conflit.

Exemples

Un probléme de stockage Supposons qu’une entreprise ait a stocker des
produits chimiques. Certains d’entre eux peuvent réagir violemment (explo-
sion, dégagement toxique, etc...) s’ils entrent en contact. Pour cette raison,
de tels produits sont dits incompatibles. Pour les garder avec sécurité, il est
nécessaire de les conserver dans des zones séparées. Le plus simple serait d’at-
tribuer une zone de stockage par produit, mais on risque alors d’utiliser plus
de zones que nécessaires (sauf si tous les produits sont mutuellement incom-
patibles). Quel est le nombre minimum de zones requises pour conserver tous
ces produits de maniére sécurisée ?

Ce probléme de stockage se traduit en un probléme de coloriage d’un graphe.
Considérons le graphe G = (V;E) ou V représente ’ensemble des produits
chimiques et E I’ensemble d’arétes reliant deux produits incompatibles. Déter-
miner le nombre minimum de zones revient a déterminer x(G).

Un probléme d’horaire Une université doit organiser les horaires des exa-
mens. On suppose qu’il y a 7 épreuves a planifier correspondant aux cours
numérotés de 1 a 7. Il ne peut y avoir qu’'une épreuve par jour. Les paires de
cours suivants ont des étudiants communs : 1 et 2, 1 et 3, 1 et 4, 1 et 7, 2 et 3,
2et4,2etH,2et7,3et4,3et6,3et7,detb det6,5et6,5et7,6et 7.
Comment organiser sur une durée minimale ces épreuves de facon qu’aucun
étudiant n’ait a passer deux épreuves le méme jour?

A cette fin, construisons le graphe G dont les sommets sont les épreuves nu-

mérotées de 1 a 7. Une aréte relie deux sommets lorsque les deux cours corres-
pondants possédent des étudiants communs :

d 4

Planifier les examens en un temps minimal consiste & déterminer une k-coloration
de G, avec k = x(G).

G posséde un sous-graphe complet d’ordre 4 (de sommets 1,2,3,4), donc 4 <
X(G). Déterminons une partition de G en sous-ensemble stables, & savoir en
sous-ensembles ne contenant que des sommets non voisins :
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S ={1;6}

S, = {2}

d’ott x(G) < 4 et finalement x(G) = 4.

Les examens peuvent étre répartis en 4 jours de la maniére suivante :
— 1°F jour : épreuves des cours 1 et 6;

— 2° jour : épreuves du cours 2;
— 3¢ jour : épreuves des cours 3 et 5;
— 4° jour : épreuves des cours 4 et 7.

842{4,7}

6.6 Dans un congrés, on cherche a planifier ’horaire d’une série de conférences
qui doivent étre toutes de méme durée. Dans le tableau ci-dessous, les étoiles
indiquent les interventions qui ne peuvent pas coincider. Comment procéder

pour que la durée totale des interventions soit minimale ?

a b ¢ d f g
a | — x K % - %
b|x - % x - %
c | *x x - % * -
d | » * *x - * -
e | — x - - - -
f - - x % - %
g | x x - - * =

6.7 Un gardien de zoo souhaite placer 8 animaux A, B, C, D, E, F, G et H dans des

enclos. Le tableau ci-dessous indique par des croix les animaux qui, pour des
raisons de sécurité, doivent étre placés dans des enclos différents. Déterminer
a 'aide d’un graphe convenable le nombre minimum d’enclos qui permet de
placer ces animaux de fagon judicieuse.

Algorithme glouton

A B C D E F G H
A — X — — X X - X
B X - X - - X - X
C — X — X — X X X
D — — X — X X X —
E X — — X — X X —
F X X X X X — — —
G — — X X X - - X
H X X X — — — X —

Il y a un algorithme naif pour décider si un graphe G de n sommets peut
étre colorié avec k couleurs. Il suffit de vérifier si I'un des k™ coloriages est
acceptable. En itérant cet algorithme pour un nombre croissant de % couleurs,
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on obtient un algorithme pour calculer le nombre chromatique, mais le temps
pour 'effectuer croit exponentiellement avec le nombre des sommets.

Trouver le nombre chromatique d’un graphe donné est un probléme difficile. On
ne connait actuellement aucun algorithme qui fonctionne en temps polynomial
et la plupart des spécialistes pensent qu’il n’en existe aucun.

Pourtant, il existe une méthode simple de coloriage : elle consiste & numéroter
les sommets du graphe et a colorier successivement chaque sommet avec la pre-
miére couleur qui n’a pas encore été attribuée a ses voisins. Malheureusement,
ce procédé ne fournit pas forcément un coloriage minimum.

On procéde comme suit :

— On numérote arbitrairement les sommets de G, a savoir vy, vs,...,v,, de
méme que les couleurs a disposition.

On affecte la couleur 1 & v;.

On considére ensuite le sommet suivant vy et on lui attribue la premiére
couleur non déja attribuée a ses voisins. Dans ce cas, c¢’est la couleur 1 ou 2.
Plus généralement, soit le sommet v; tel que tous les sommets précédents
vy, Vg, ..., v;_1 soient déja coloriés. On attribue alors & v; la premiére couleur
non déja attribuée a ses voisins.

— On poursuit de méme jusqu’a colorier ainsi tous les sommets.

Exemple Voici l'effet de ’algorithme glouton sur le graphe G :

Ug Uy V10 3 4 2

L’application de 1’algorithme glouton
montre que le graphe G est 4-coloriable.

Pourtant son mnombre chromatique
X(G) = 3, comme le montre la figure
ci-contre.

Remarques

— L’efficacité de ’algorithme glouton dépend beaucoup de l'ordre initial donné
aux sommets. Il y a n! ordres possibles et, si 'on veut les essayer tous,
I’algorithme requiert un temps exceptionnel.
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— Il peut arriver que, dans la numérotation des sommets, I’on tombe précisé-
ment sur celle qui est associée a un coloriage minimum.
Malgré le gaspillage possible, cet algorithme est utilisé en théorie et en pratique.

6.8 Utiliser I'algorithme glouton pour colorier les sommets du graphe suivant en
respectant dans chaque cas 1’ordre proposé.
1) 3 )¢ 2) a f 3) a g
e h c g b
d b h b e
f ' d e h c

Quelle est la valeur de x(G)?

6.9 Utiliser 1’algorithme glouton pour colorier les graphes suivants :
2) <

Théoréme Si G est un graphe simple tel que le degré maximum des sommets
soit d, alors x(G) < d+ 1.

Preuve Quelle que soit la numérotation des sommets, 'algorithme glouton
n’utilise jamais plus de d + 1 couleurs, puisqu’un sommet n’a jamais plus de
d voisins.

6.10 Montrer qu’ajouter une aréte a un graphe augmente son nombre chromatique
d’au plus 1.

Avec plus d’efforts, on peut améliorer le résultat du théoréme précédent.

Théoréme de Brooks (1941) Si G est un graphe simple et connexe sans
étre un graphe complet, et si le plus haut degré des sommets de G est d (d > 3),
alors x(G) < d.

Nous ne démontrerons pas ce théoréme, mais nous allons en illustrer ’emploi.
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6.11

6.12

6.13

Exemple
Considérons a nouveau le graphe G ci-contre.

Nous avons déja vu que 4 < x(G), du fait que G
contient le graphe complet Kjy.

Par ailleurs, G satisfait les conditions du théoréme de
Brooks avec d = 4, d’ou x(G) < 4.

On conclut que x(G) = 4.

Malheureusement, la situation n’est pas toujours aussi favorable. En particu-
lier, si G contient un petit nombre de sommets de degré élevé, la borne proposée
par le théoréme de Brooks n’est du tout satisfaisante.

Par exemple, considérons le graphe ci-contre.
D’aprés le théoréme de Brooks, x(G) < 12, alors
que x(G) = 2.

Dessiner deux graphes non isomorphes, simples et connexes, comportant 5 som-
mets, dont le plus haut degré est d, et tels que x(G) = d + 1.

Polynéme chromatique

Malgré les résultats obtenus ci-dessus, déterminer de maniére efficace le nombre
chromatique reste encore un probléme non résolu. Nous avons vu que la mé-
thode consistant a essayer toutes les possibilités devient rapidement imprati-
cable. Pourtant, il existe des algorithmes qui améliorent substantiellement la
recherche du nombre chromatique. Nous allons en présenter un qui utilise des
techniques algébriques.

Soit G un graphe simple. Notons Pg(A) le nombre de facons de colorier les
sommets de G avec A couleurs. La fonction Pg(\) s’appelle le polynéme

chromatique'® de G.

Déterminer le polynéme P () si G est le graphe nul (sans arétes) a n sommets.

Déterminer le polynéme Pg(A) si G est le graphe complet K,,.

Proposition Si G est un arbre a n sommets, alors Pg(\) = A (A —1)"71.

1. I n’est pas évident a priori que le nombre de A-coloriages d’un graphe G soit un
polynéme en A. Ce résultat sera établi plus tard (théoréme de Birkhoff).
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6.14

Preuve On montre le résultat par récurrence sur le nombre de sommets n.
Sin =1, on a évidemment Pg(A) = A.

SAi n > 1, 'arbre posséde une extrémité, c’est-a-dire un sommet a de degré 1.
Otons de G le sommet a et l'aréte issue de a. Le graphe H restant est un arbre
a n — 1 sommets. L’hypothése de récurrence implique Pg(A) = A (A — 1)" 2.
Dans un coloriage de G, le sommet a peut recevoir 'une quelconque des A cou-
leurs, a part celle de son unique voisin, d’ott Pg(A) = Pg(A) (A = 1).

On conclut finalement que Pg(A) = A (A —1)"2(A=1) = A (A —1)""1

Il est clair que :

— si A < x(G), alors Pg(\) = 0;

—si A > x(G), alors Pg(\) > 0.

Le nombre chromatique de G est ainsi le plus petit entier positif A pour lequel
Pa()) > 0. Cest pourquoi trouver une méthode pour calculer Pg(A), c’est
trouver une méthode pour calculer x(G).

Ecrire les polynomes chromatiques des graphes suivants :
1) le graphe complet Kg;
2) le graphe bipartite complet Kj 5 :

De combien de maniéres ces graphes peuvent-ils étre coloriés avec 7 couleurs ?

Le théoréme suivant va fournir une méthode systématique pour obtenir le
polynome chromatique d’un graphe a partir du polyndéme chromatique d’un
graphe nul.

Mais, pour pouvoir I’énoncer, nous devons d’abord définir deux opérations sur
les graphes.

Soit une aréte e reliant des sommets u et v d’'un graphe G.
Le graphe G — e est le graphe obtenu & partir de G en supprimant I'aréte e.

Le graphe G \ ¢ est le graphe obtenu en contractant e, c’est-a-dire en suppri-
mant e et en identifiant les sommets u et v.

Exemple Nous avons représenté ci-dessous les graphes G, G —eet G\ e :

NV

Théoréme (suppression-contraction) Soient un graphe simple G, G — e
le graphe obtenu en supprimant une aréte e et G ~\ e le graphe obtenu en
contractant cette aréte e. Alors :

Pa(A) =Pg_e(A) — Pae(N)
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Preuve Les coloriages de G — e peuvent se partager en deux classes dis-
jointes : la classe C; ol u et v sont de couleurs différentes et la classe Cy ol u
et v sont de méme couleur. Posons N; = |Cy] et Ny = |Cs|.
1°* cas : u et v sont de couleurs différentes.
La suppression de 'aréte e dans G n’affecte en rien le coloriage de G,
d’ott N = Pg()).
20d cas : u et v sont de méme couleur.
Le nombre de coloriages de G — e vaut dans ce cas Ny = Pg. ().

I en résulte Pg_.(A) = N; + Ny = Pg(A\) + Pg(A), d’ou le théoréme.

L’intérét du théoréme ci-dessus est de donner une formule de récurrence pour
calculer Pg(A) selon 'une des méthodes suivantes :

1) aprés avoir retiré successivement toutes les arétes, on parvient au graphe
nul avec n sommets ;
2) dans l'autre sens, en ajoutant chaque fois une aréte, on parvient au
graphe complet K,,.
Pour n fixé, quand le nombre d’arétes est petit, la premiére méthode est pré-
férable ; quand le nombre d’arétes est grand, c’est la seconde méthode qui est
préférable.
IMustrons ces deux méthodes pour le graphe cyclique C4, en symbolisant le
polynome chromatique d’un graphe par le graphe lui-méme, dessiné entre ac-
colades.

Exemple : réduction au graphe nul

-0
IR RIS
{

S

- (¥ —1))=A(A-1)(A-2)
4)\3+6/\2 3A

Exemple : complétion en K,

JYE R S
A
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6.15

6.16

6.17

6.18

6.19

{073

| )
)7

L.
-

(A=1)(A—2)+A(\—1)?

A—1)(A—2)(A—3)+
AN 46N -3

Déterminer le polyndéme chromatique des graphes suivants :
1) [ 2) :

Déterminer le polyndéme chromatique des graphes suivants :
1) E ] 2) A\

Déterminer le polyndme chromatique des graphes suivants :

1) A~ 2)

Construire des graphes possédant les polynéomes chromatiques suivants :
HDAA-1)(N—2) 2) A(A=1)2(A—2)
HAAN-1)(A—2)2 HAAN=1)(A=2)(A=13)

Trouver un graphe admettant \> — 6 A* + 11 \*> — 6 A2 pour polynéme chroma-
tique.

Théoréme de Birkhoff Soit G un graphe simple avec n sommets et m arétes.
Alors Pg(\) est un polynome unitaire de degré n en A, a coefficients entiers et
de terme constant nul. De plus, ses coefficients alternent en signe et le coeffi-
cient de \" ! vaut —m.
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Preuve La démonstration se fait par récurrence sur le nombre d’arétes du
graphe dont le nombre de sommets n est fixé.

Sim =0, G est le graphe nul avec n sommets, donc Pg(\) = A"

Soit G un graphe d’ordre n avec m arétes et soit e une aréte quelconque de G.
A la fois G — e et G \ e (aprés suppression des arétes multiples si nécessaires)
sont des graphes simples avec au plus m — 1 arétes. Ainsi, par hypothése de
récurrence, on a :

Peoe(A) = A" —ap 1 A" o (1) g A
Paoe(A) = A" 1 — by o A" 24 (1) 2 by A

oll ay,...,0, 1,b1,...,b, o sont des entiers non négatifs et a, 1 = m —1 =
nombre d’arétes de G — e.

D’aprés le théoréme de suppression-contraction, Pg(A) = Pg_e(A) — Pawe(N),
de sorte que :

Pg()\) = A\" - (an,1 -+ 1) )\n—l + .0+ (_1)n—1 (Cll -+ bl) A

Puisque a, 1 + 1 =m, Pg()\) vérifie toutes les propriétés annoncées.

6.20 Montrer que les polynomes suivants ne sont pas des polynémes chromatiques
de graphes.
1) AT= X0 +1 2) M —=3A 4+ 27—\
Réponses
6.1 X(K,) =n
6.2 V(C) = {2 s% n est Pair .
3 sl n est impair
6.3 2 (s'il posséde au moins 2 sommets)
6.4 3
6.5 1) 3 2) 3 3) 2
4) 4 5) b 6) 4
6.6 ‘a,e,f‘b‘c,g‘d‘
6.7 4 enclos sont nécessaires et suffisent : ‘ AC ‘ BE ‘ D H ‘ FG ‘
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6.8

6.9

6.11
6.12
6.13

6.14

6.15

6.16

6.17

6.18

6.19

2 3) 1 2
3 2 1
1 1 2
3 2 1
2) !
9 2 1
4 3

PeN) =AA=1)(A—=2) -+ (A —n+1)

DAA=1(A=2)(A=3)(A—4)(A—5) 5040 2) A(A—1)5 54 432

DAN=1)2(\—2)
1A —1) (A —2)?

DAA=1)(A—2)(\2—3XA+3)
DA

3)

A :

2 AN —1)(A—2)?
N AN —1)(A—2) (A2 =2\ +2)
NAN=1)A=2)(\2—5\+7)
2)[

4)
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7.1

7.2

Algorithmes efficaces

En théorie des graphes, nous avons déja vu ce qu’est un algorithme, a savoir la
donnée d’une série d’instructions qui permettent, pas a pas, d’obtenir la solution
d’un probléme donné.

Dans la pratique, la découverte d’'un algorithme pour résoudre un probléme n’est
pas suffisante. Il faut encore se poser la question de son efficacité. Pour mieux
comprendre ce que cela veut dire, revenons au probléme du voyageur de commerce
et supposons que celui-ci, habitant la ville A, dispose de la carte routiére suivante
avec les distances entre les villes (il doit revenir en A).

La maniére la plus évidente de résoudre ce probléme est d’employer la « force
brute » :

1) faire la liste de tous les itinéraires possibles;
2) calculer la longueur de chacun d’entre eux;

3) sélectionner celui qui est le plus court.

1) Combien y a-t-il d’itinéraires possibles dans ’exercice précédent ?

2) En supposant que le graphe soit complet, combien y a-t-il d’itinéraires pos-
sibles pour
(a) 6 villes?
(b) 7 villes?
(c) n villes?

3) Imaginons qu’un ordinateur trés rapide puisse décrire un itinéraire et calculer
sa longueur en 10 microsecondes. Combien de temps lui faudrait-il, avec

20 villes, pour déterminer le trajet le plus court en utilisant la méthode de
la « force brute » 7

La technique de la « force brute » ou autrement dit de I’énumération exhaus-
tive peut étre trés efficace sur de petits exemples, mais quand les données sont
d’une certaine importance, elle devient complétement impraticable. A part le fait
d’exiger qu'un algorithme ait chacune de ses étapes bien définies et fournisse la
solution en un nombre fini d’étapes, il faut donc encore ajouter des considérations
d’ordre pratique. Est-ce que le probléme, pour des données de taille modérée, peut
étre résolu par tel ou tel algorithme en un temps raisonnable 7 Répondre a cette
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question implique de dénombrer chacune des opérations qui sont faites a chaque
étape.

Par exemple, dans l'algorithme de Fleury, on peut vérifier que ce nombre est
proportionnel & n ou n est le nombre d’arétes. Pour ’algorithme de connexion
minimale, ce nombre est & peu prés proportionnel & n? ot n est le nombre de
sommets.

Dans ces cas ou dans d’autres ou le temps utilisé pour faire fonctionner ’algo-
rithme est un polynéme en n, ot n représente un certain parameétre associé a la
quantité des données implémentées dans 'ordinateur, on parle d’algorithme en
temps polynomial.

Il existe des algorithmes dont le temps de fonctionnement est de 1'ordre d’une
puissance de n. C’est le cas par exemple lorsqu’il faut examiner toutes les parties
d’un ensemble & n éléments, puisqu’un tel ensemble a 2™ parties. On dit alors que
ces algorithmes sont en temps exponentiel; on les appelle aussi algorithmes
gloutons.

7.3 Imaginons que ’on utilise un ordinateur capable d’effectuer 1000 opérations a la
seconde. Compléter le tableau suivant qui donne les temps approximatifs néces-
saires pour effectuer divers algorithmes, les uns en temps polynomial (d’ordre n
et n?), les autres en temps exponentiel (d’ordre 2" et 3").

n=10 | n=50 | n =100

27’L
3TL

L’exercice 7.3 montre pourquoi I’on considére les algorithmes en temps polynomial
comme efficaces, alors que les algorithmes en temps exponentiel sont considérés
de peu d’utilité sauf dans les exemples de petite taille.

Algorithme de Dijkstra

L’algorithme de Dijkstra est un algorithme en temps polynomial (d’ordre n?) qui
permet de trouver quelle est la longueur du plus court chemin qui joint deux villes
déterminées lorsqu’on connait la longueur des routes.

Par exemple, considérons la situation suivante ou les sommets représentent des
villes, les arétes des routes et les nombres des distances.
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On cherche a déterminer le plus court chemin allant de S a E.

L’idée générale de l'algorithme de Dijkstra est de parcourir le graphe en allant
de S & E en attribuant de proche en proche a chaque sommet un poids qui est
égal a la plus petite des distances entre S et ce sommet.

Plus précisément, on procéde comme suit.

Initialisation Tous les sommets sont non marqués et ont un poids provisoire
infini, sauf le sommet de départ qui a un poids nul.

Itérations Tant qu’il existe un sommet non marqué :
— choisir le sommet T qui posséde le plus petit poids provisoire ;
— fixer définitivement le poids de T et marquer le sommet T ;
— pour chaque sommet U non marqué et voisin de T :
e calculer la somme s du poids de T et du poids de I’aréte reliant T a U ;
e si s est inférieur au poids provisoire de U, affecter s & U comme nouveau
poids provisoire et le noter s(T) pour indiquer ainsi la provenance de
cette derniére affectation, sinon conserver le poids provisoire.

Voici 'application de cet algorithme au graphe précédent :
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. 3 1 6(D) Le plus court chemin a un poids 6.
S E Il se lit & 'envers : EDCBS.

D
1(S) 5(0)

On peut aussi représenter les différentes étapes de I'algorithme exécutées sur cet
exemple par un tableau :

S| A B C D E sommets marqués
0
0 [ 3(S) [ 1(5) S

2(B) | 1(S) | 4(B) | 6(B) S,.B

2(B) 4(B) | 6(B) S,B,A

4(B) | 5(C) | 7(C) S,B,A,C
5(C) | 6(D) S,B,A,C,D
6(D) S,B,A,C,D,E
7.4 Utiliser 'algorithme de Dijkstra pour trouver le chemin de poids minimal entre A

et F:
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7.5 Utiliser ’algorithme de Dijkstra pour trouver le chemin de poids minimal entre A

et G :
B 40 E
30 6 35 8
A 19 11 G
12 23
50 20
C 10 F
7.6 Utiliser ’algorithme de Dijkstra pour trouver le chemin de poids minimal entre A
et G :
7.7 Utiliser I'algorithme de Dijkstra pour trouver le chemin de poids minimal entre S

et E, en prenant garde au fait qu’il s’agit d’'un graphe orienté.

Le probléme du postier

Un postier cherche a distribuer ses lettres en parcourant la plus petite distance
tout en retournant a son point de départ. Il doit passer évidemment par chaque
rue au moins une fois en évitant autant que possible de repasser par un trongon
déja parcouru.

Il y a quelques années, la ville de Ziirich commandita une grande étude pour
déterminer rationnellement le plan de déneigement de ses rues. C’est, en plus
compliqué, un probléme semblable a celui du postier. En effet, il est nécessaire
en plus de partager habilement la ville en secteurs de maniére & occuper chaque
véhicule de déneigement.
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7.8

Le probléme peut étre reformulé en termes de graphe pondéré ou le graphe cor-
respond au réseau des rues et le poids de chaque aréte a la longueur de la rue
correspondante. Dans cette nouvelle formulation, 'exigence est de trouver un
chemin fermé de poids minimal qui inclut chaque aréte au moins une fois.

Si le graphe est eulérien, chaque chemin eulérien sera un itinéraire acceptable. Un
tel chemin peut étre obtenu si nécessaire a ’aide de I'algorithme de Fleury.

Par contre, si le graphe n’est pas eulérien, le probléme est beaucoup plus difficile.
On connait cependant un algorithme efficace pour trouver la solution, méme s’il
est trop compliqué pour étre donné ici. La solution générale s’inspire du cas
particulier ol le graphe est semi-eulérien.

Considérons par exemple le graphe suivant :

B 5 C
3 5
A S D
4 9
F 6 E

Puisque B et E sont les deux seuls sommets de degré impair, nous pouvons trouver
un chemin semi-eulérien allant de B & E en parcourant chaque aréte une seule
fois.

Pour retourner au point de départ en parcourant la plus petite distance possible,
nous pouvons trouver le plus court chemin allant de B & E en utilisant I’algorithme
de Dijkstra.

La solution du probléme du postier est obtenue dans ce cas en joignant le plus
court chemin EFAB au chemin semi-eulérien initial BAFBCFECDE. La distance
totale vaut donc 13 + 64 = 77.

Résoudre le probléme du postier pour le graphe pondéré ci-dessous :
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AEBCDA
AEBDCA
AECBDA
AECDBA
AEDBCA
AEDCBA

115
141
116
130
121
109

3) 38 573 années

7.9 Résoudre le probléme du postier pour le graphe pondéré ci-dessous :
A
1
3
1
D
7.10 Résoudre le probléme du postier pour le graphe pondéré ci-dessous :
B 5 C
3
A 10 L
9
F 7 E
Réponses
7.1 ABCDEA 109 ACBDEA 121 ADBCEA 116
ABCEDA 105 ACBEDA 116 ADBECA 137
ABDECA 131 ACDBEA 141 ADCBEA 115
ABDCEA 130 ACDEBA 130 ADCEBA 125
ABEDCA 130 ACEBDA 137 ADEBCA 116
ABECDA 125 ACEDBA 131 ADECBA 105
7.2 1) 41=24 2) 5!1=120 6!=720 (n—1)!
7.3
n =10 n = 50 n = 100
n | 0,0ls 0,05 s 0,1s
n’ 1s 2 min 16 min
2n 1s 35 702 ans 4-10" ans
3" | 1min | 2,27-10" ans | 1,63 - 1037 ans
7.4 AEDF de poids 10
7.5 ABDCFEG de poids 77
7.6 ABEHFIKG de poids 17
7.7 SCFE de poids 10
7.8 BAEDCBECDEB de poids 27
7.9 BACDAEDBCAEDB de poids 24
7.10 CDEFABCEBFEDC de poids 79

Théorie des graphes : algorithmes efficaces

7.7



