
4.1 1) |z| = |a − b i| =
√

a2 + (−b)2 =
√

a2 + b2 = |z|
L’exercice 4.4 1) a montré que z z = a

2 + b
2, d’où suit immédiatement que√

z z =
√

a2 + b2 = |z| .

2) (a) Si z = 0, alors |z| =
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02 + 02 = 0.

(b) Soit z = a + b i un nombre complexe tel que |z| = 0.
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a2 + b2 = |z| = 0 impose |a| = 0, d’où a = 0.
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a2 + b2 = |z| = 0 donne b = 0.

Par conséquent, z = 0 + 0 i = 0.
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Autre preuve :
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Algèbre : nombres complexes — forme trigonométrique Corrigé 4.1


