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En utilisant la formule de l’exercice 5.11 3) (c), on trouve :
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Puisque les points P et P′ sont les points de l’ellipse possédant la même abscisse
que le foyer F(c ; 0), leurs coordonnées s’obtiennent en résolvant le système
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En remplaçant x = c dans la première équation, on obtient :
c2

a2
+

y2

b2
= 1

y2

b2
= 1 −

c2

a2
=

a2
− c2

a2
=

b2

a2

y2 =
b4

a2
=

(

b2

a

)2

= p2

y = ±p

On a par conséquent trouvé P(c ; p) et P′(c ;−p) .

Géométrie : coniques Corrigé 5.14


