
5.23 Puisque e > 1, on a e2 > 1, de sorte que 1 − e2 < 0 .

En reprenant les définitions de l’exercice 5.11, on obtient :
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En reprenant les résultats de l’exercice 5.11, on a :
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Puisque les points P et P′ sont les points de l’hyperbole possédant la même

abscisse que le foyer F(c ; 0), leurs coordonnées s’obtiennent en résolvant le

système






x2

a2
−

y2

b2
= 1

x = c

En remplaçant x = c dans la première équation, on obtient :
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On a par conséquent trouvé P(c ; p) et P′(c ;−p) .

Géométrie : coniques Corrigé 5.23


