
5.31 On considère y comme une fonction implicite de x, c’est-à-dire y = f(x) .
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2) L’équation de la tangente au graphe de f au point P
(

x1 ; f(x1)
)

est donnée
par la formule :
y = f ′(x1) (x − x1) + f(x1)
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Étant donné que le point P(x1 ; y1) fait partie de l’ellipse Γ, ses coordon-

nées vérifient son équation : x2
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Par suite, l’équation de la tangente devient :
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