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Comme ‖−−−−→
CA‖ = ‖−−−−→

CB‖, le triangle ABC est isocèle en C.

2)
−−−−−→
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−−−−→
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(
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, on tire que D(4 ; 5).

Pour montrer que la droite CD est bissectrice de l’angle ACB, il faut mon-
trer qu’elle coupe cet angle en deux angles égaux : γ1 = γ2.

(a) cos(γ1) =
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√
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√
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=
3√
10

γ1 = arccos
(

3√
10

)

≈ 18,43̊
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(b) cos(γ2) =
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3 · 1 + 3 · 2√

32 + 32
√
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9

3
√
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√

5
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γ2 = arccos
(

3√
10

)

≈ 18,43̊
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