$$0^2 \equiv 0 \mod 4$$

$$1^2 \equiv 1 \mod 4$$

$$2^2 \equiv 4 \equiv 0 \mod 4$$

$$3^2 \equiv 9 \equiv 1 \mod 4$$

on remplit le tableau :

$x \equiv \dots$	$\mod 4$	0	1	2	3
$x^2 \equiv \dots$	$\mod 4$	0	1	0	1

On remarque en particulier que les seuls restes possibles dans la division par 4 d'un carré sont 0 et 1.

2)

+		y^2		
		0	1	
x^2	0	0	1	
	1	1	2	

Ce second tableau montre que les seuls restes possibles dans la division par 4 d'une somme de deux carrés $x^2 + y^2$ sont 0, 1 et 2.

En particulier, le reste dans la division par 4 d'une somme de deux carrés ne peut pas valoir 3.

3) Soit (x;y) un point situé sur le cercle centré à l'origine et de rayon $5\sqrt{7}$. Alors ses coordonnées vérifient l'équation $x^2+y^2=(5\sqrt{7})^2=175$.

Attendu que $175 \equiv 3 \mod 4$, il est impossible, au vu du résultat précédent 2), que les coordonnées x et y soient toutes deux entières.