- 2.8 1) Vu la propriété 3) de l'exercice 1.1, on a $m \mid 0$. Puisque a-a=0, on obtient $m \mid (a-a)$. Ceci équivaut à $a \equiv a \mod m$, d'après l'exercice 2.6.
 - 2) Supposons $a \equiv b \mod m$. Vu l'exercice 2.6, il existe $k \in \mathbb{Z}$ tel que b = a + k m. On en tire a = b - k m. En posant k' = -k, on obtient a = b + k' m avec $k' \in \mathbb{Z}$. Ceci revient à dire que $b \equiv a \mod m$.
 - 3) Supposons $a \equiv b \mod m$ et $b \equiv c \mod m$. Ces hypothèses équivalent à $m \mid (a-b)$ et $m \mid (b-c)$. La propriété 6) de l'exercice 1.1 implique $m \mid (1 \cdot (a-b) + 1 \cdot (b-c))$. Or $1 \cdot (a-b) + 1 \cdot (b-c) = a-b+b-c = a-c$. Par conséquent, $m \mid (a-c)$, c'est-à-dire $a \equiv c \mod m$.