6.3 1) Supposons que $f'(x) \ge 0$ pour tout $x \in I$.

Soient $x_1 \in I$ et $x_2 \in I$ avec $x_1 < x_2$.

Il faut montrer que $f(x_1) \leq f(x_2)$, à savoir que $f(x_2) - f(x_1) \geq 0$.

Vu le théorème des accroissements finis, il existe $c \in]x_1; x_2[$ tel que $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$

On en conclut
$$f(x_2) - f(x_1) = \underbrace{f'(c)}_{\geq 0} \underbrace{(x_2 - x_1)}_{> 0} \geq 0$$
.

2) Supposons f croissante sur I.

Soit $x \in I$.

Soit $h \in \mathbb{R} - \{0\}$ tel que $x + h \in I$.

(a) Supposons h > 0.

x + h > x entraı̂ne $f(x + h) \ge f(x)$, vu la croissance de f.

Il en résulte que
$$\underbrace{\frac{0}{f(x+h)-f(x)}}_{>0} \geqslant 0.$$

(b) Supposons h < 0.

x + h < x implique $f(x + h) \le f(x)$, vu la croissance de f.

Il en suit que
$$\underbrace{\frac{\int_{0}^{60} f(x+h) - f(x)}{h}}_{<0} \geqslant 0.$$

On en tire que $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \geqslant 0.$