Soient $x, a \in I$. 6.9

- 1) Supposons x = a. $f(a) + (x - a) f'(a) = f(a) + 0 \cdot f'(a) = f(a) = f(x) \ge f(x)$.
- 2) Supposons x > a.

Le théorème des accroissements finis garantit l'existence de $c \in]a;x[$ tel que $f'(c) = \frac{f(x) - f(a)}{x - a}$. Par hypothèse, f'' < 0 sur I, si bien que la fonction f' est décroissante

sur I. Ainsi c > a implique $f'(c) \leq f'(a)$.

On obtient donc $\frac{f(x)-f(a)}{x-a} \leqslant f'(a)$, c'est-à-dire $f(x) \leqslant f(a) + (x-a) f'(a)$.

3) Supposons x < a.

De même, il existe $c \in]x$; a[tel que $f'(c) = \frac{f(a) - f(x)}{a - x}$.

Comme f' est décroissante sur I, c < a implique $f'(c) \ge f'(a)$. Par conséquent $\frac{f(a)-f(x)}{a-x} \geqslant f'(a)$, ce qui donne $f(a)-f(x) \geqslant (a-x) f'(a)$, puis en multipliant par $-1: f(x)-f(a) \leqslant (x-a) f'(a)$. On conclut finalement que $f(x) \leq f(a) + (x - a) f'(a)$.