7.4 1) $e d \equiv 1 \iff e d - 1 = k \varphi(n) \iff e d = 1 + k \varphi(n) \text{ avec } k \in \mathbb{Z}$ Puisque e > 1 et d > 1, on a e d > 1, si bien que $k \varphi(n) \geqslant 0$. De $\varphi(n) \geqslant 0$, on tire que $k \geqslant 0$.

$$(a^e)^d = a^{e\,d} = a^{1+k\,\varphi(n)} = a^1 \cdot a^{k\,\varphi(n)} = a \cdot \left(a^{\varphi(n)}\right)^k$$

2) (a) Si $p \nmid a$ et $q \nmid a$, alors a et n = p q sont premiers entre eux. Le théorème d'Euler implique $a^{\varphi(n)} \equiv 1 \mod n$.

On en déduit :
$$(a^e)^d = a \cdot (\underbrace{a^{\varphi(n)}}_{\equiv 1})^k \equiv a \cdot 1^k \equiv a \mod n$$
.

- (b) i. $p \mid a \iff p \mid (a-0) \iff a \equiv 0 \mod p$ $(a^e)^d \equiv (0^e)^d \equiv 0^d \equiv 0 \equiv a \mod p$
 - ii. Le petit théorème de Fermat affirme que $a^{(q-1)} \equiv 1 \mod q.$

$$(a^e)^d = a \cdot (a^{\varphi(n)})^k = a \cdot (a^{(p-1)(q-1)})^k = a \cdot (a^{(q-1)})^{k(p-1)}$$

 $\equiv a \cdot (1)^{k(p-1)} \equiv a \cdot 1 \equiv a \mod q$

- iii. D'après l'exercice 4.4, les congruences $\begin{cases} (a^e)^d \equiv a \mod p \\ (a^e)^d \equiv a \mod q \end{cases}$ impliquent $(a^e)^d \equiv a \mod p \, q$, car $\operatorname{pgcd}(p,q) = 1$. On conclut en rappelant que $p \, q = n$.
- (c) i. $q \mid a \iff q \mid (a-0) \iff a \equiv 0 \mod q$ $(a^e)^d \equiv (0^e)^d \equiv 0^d \equiv 0 \equiv a \mod q$
 - ii. Le petit théorème de Fermat affirme que $a^{(p-1)}\equiv 1 \mod p.$

$$(a^e)^d = a \cdot (a^{\varphi(n)})^k = a \cdot (a^{(p-1)(q-1)})^k = a \cdot (a^{(p-1)})^{k(q-1)}$$

 $\equiv a \cdot (1)^{k(q-1)} \equiv a \cdot 1 \equiv a \mod p$

- iii. D'après l'exercice 4.4, les congruences $\begin{cases} (a^e)^d \equiv a \mod p \\ (a^e)^d \equiv a \mod q \end{cases}$ impliquent $(a^e)^d \equiv a \mod p q$, car $\operatorname{pgcd}(p,q) = 1$. On conclut en rappelant que pq = n.
- (d) $p \mid a \iff p \mid (a 0) \iff a \equiv 0 \mod p$ $q \mid a \iff q \mid (a - 0) \iff a \equiv 0 \mod q$

D'après l'exercice 4.4, les congruences $\begin{cases} a \equiv 0 \mod p \\ a \equiv 0 \mod q \end{cases}$ impliquent $a \equiv 0 \mod p q$, à savoir $a \equiv 0 \mod n$.

Par conséquent, $(a^e)^d \equiv (0^e)^d \equiv 0^d \equiv 0 \equiv a \mod n$.