- 7.5 On rappelle qu'à l'exercice 7.2, on a trouvé que Bob a pour clé publique (253, 3) et pour clé secrète (11, 23, 147).
 - 1) Pour décrypter 13, il faut calculer $13^{147} \mod 253$:

x	reste r	n	$13^{2^n} \mod 253$	contribution (si $r = 1$)			
147	1	0	13	13			
73	1	1	$13^2 \equiv -84$	-84			
36	0	2	$(-84)^2 \equiv -28$				
18	0	3	$(-28)^2 \equiv 25$				
9	1	4	$25^2 \equiv 119$	119			
4	0	5	$119^2 \equiv -7$				
2	0	6	$(-7)^2 \equiv 49$				
1	1	7	$49^2 \equiv 124$	124			

1 | 1 | 7 |
$$49^2 \equiv 124$$
 | 124
 $13^{147} \equiv \underbrace{13 \cdot (-84)}_{\equiv -80} \cdot \underbrace{119 \cdot 124}_{\equiv 82} \equiv -80 \cdot 82 \equiv 18 \mod 253$

Le 13 est ainsi décodé en 18.

- 2) Pour décrypter 00, il faut calculer $0^{147} \equiv 0 \mod 253$.
- 3) Pour décrypter 66, il faut calculer $66^{147} \mod 253$:

x	reste r	n	$66^{2^n} \mod 253$	contribution (si $r = 1$)				
147	1	0	66	66				
73	1	1	$66^2 \equiv 55$	55				
36	0	2	$55^2 \equiv -11$					
18	0	3	$(-11)^2 \equiv 121$					
9	1	4	$121^2 \equiv -33$	-33				
4	0	5	$(-33)^2 \equiv 77$					
2	0	6	$77^2 \equiv 110$					
1	1	7	$110^2 \equiv -44$	-44				

$$66^{147} \equiv \underbrace{66 \cdot 55}_{\equiv -80} \cdot \underbrace{(-33) \cdot (-44)}_{\equiv 82} \equiv 88 \cdot (-66) \equiv 11 \mod 253$$

Le 66 est ainsi décodé en 11.

4) Pour décrypter 157, il faut calculer $157^{147} \mod 253$:

x	reste r	n	$157^{2^n} \mod 253$	contribution (si $r = 1$)				
147	1	0	157	157				
73	1	1	$157^2 \equiv 108$	108				
36	0	2	$108^2 \equiv 26$					
18	0	3	$26^2 \equiv -83$					
9	1	4	$(-83)^2 \equiv 58$	58				
4	0	5	$58^2 \equiv 75$					
2	0	6	$75^2 \equiv 59$					
1	1	7	$59^2 \equiv -61$	-61				

Le 157 est ainsi décodé en 20.

5) Pour décrypter 28, il faut calculer $28^{147} \mod 253$:

x	reste r	n	$28^{2^n} \mod 253$	contribution (si $r = 1$)		
147	1	0	28	28		
73	1	1	$28^2 \equiv 25$	25		
36	0	2	$25^2 \equiv 119$			
18	0	3	$119^2 \equiv -7$			
9	1	4	$(-7)^2 \equiv 49$	49		
4	0	5	$49^2 \equiv 124$			
2	0	6	$124^2 \equiv -57$			
1	1	7	$(-57)^2 \equiv -40$	-40		

Le 28 est ainsi décodé en 19.

Le message crypté $13\ 00\ 66\ 157\ 28$ est donc décodé en $18\ 00\ 11\ 20\ 19$.

A	В	С	D	Е	F	G	Н	Ι	J	K	L	М
00	01	02	03	04	05	06	07	08	09	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	X	Y	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Il signifie SALUT.