1 Généralités sur les fonctions

Une fonction d'une variable réelle et à valeurs réelles est une application d'une partie E de \mathbb{R} vers \mathbb{R} .

Le plus souvent, on dit « fonction de E vers \mathbb{R} » ou tout simplement « fonction ». Pour une fonction de E vers \mathbb{R} , on utilise la notation suivante :

$$f: \to \mathbb{R}$$

 $x \longmapsto f(x)$

Ensemble de définition

On se donne couramment une fonction au moyen d'une expression f(x) en la variable x. L'ensemble de définition d'une fonction f, noté D_f , est l'ensemble des nombres x pour lesquels f(x) existe.

1.1 Déterminer l'ensemble de définition des fonctions suivantes :

1)
$$f(x) = x^2 + 7x + 12$$

2)
$$f(x) = \frac{2x-3}{x+7}$$

3)
$$f(x) = \frac{1}{x^2 + 8x + 15}$$

4)
$$f(x) = \frac{3x+8}{2x^2+3}$$

$$5) \ f(x) = \frac{3x+8}{2x^2+3x}$$

6)
$$f(x) = \frac{3}{|x^2 - 5x| + 1}$$

7)
$$f(x) = \frac{5x - 1}{|x| + x}$$

8)
$$f(x) = \sqrt{x^2 - 9}$$

9)
$$f(x) = \sqrt{x^2 + 9}$$

10)
$$f(x) = \sqrt{7x - x^2 - 12}$$

11)
$$f(x) = \sqrt{x+1}\sqrt{x-3}$$

12)
$$f(x) = \sqrt{(x+1)(x-3)}$$

13)
$$f(x) = \sqrt{|x+1|} \sqrt{|x-3|}$$

14)
$$f(x) = \sqrt{\frac{x+1}{x-3}}$$

$$15) \ f(x) = \sqrt{\left|\frac{x+1}{x-3}\right|}$$

16)
$$f(x) = \sqrt{\frac{x}{x+1} - \frac{x}{x-1}}$$

Graphe

Dans le plan muni d'un système d'axes, l'ensemble des points de coordonnées (x; f(x)) où $x \in D_f$ constitue la **représentation graphique** de f ou **courbe représentative** de f ou, plus simplement, le **graphe** de f.

1.2 Déterminer l'ensemble de définition, étudier le signe, puis représenter graphiquement les fonctions suivantes pour $x \in [-3; 3]$:

1)
$$f(x) = 2x - 1$$

2)
$$f(x) = -\frac{1}{3}x + 2$$

3)
$$f(x) = x^2 - 2x$$

4)
$$f(x) = -x^2 + 1$$

5)
$$f(x) = |x|$$

6)
$$f(x) = \sqrt{x+2}$$

1.3 On considère les fonctions suivantes :

$$f_1(x) = \frac{1}{x-2}$$
 $f_2(x) = (x-2)^2$ $f_3(x) = 2^x$
 $f_4(x) = (\sqrt{x-2})^2$ $f_5(x) = x^2 - 2$ $f_6(x) = x - 2$

$$f_2(x) = (x-2)^2$$

$$f_3(x) = 2^x$$

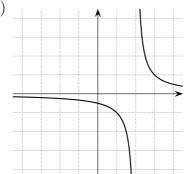
$$f_4(x) = (\sqrt{x-2})^2$$

$$f_5(x) = x^2 - 2$$

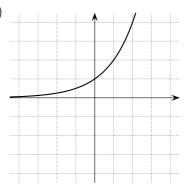
$$f_6(x) = x - 2$$

Déterminer, parmi les graphes ci-dessous, lequel correspond à chacune de ces fonctions.

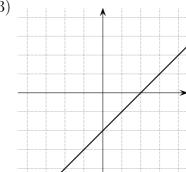
1)

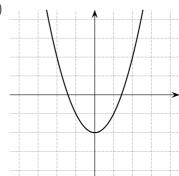


2)

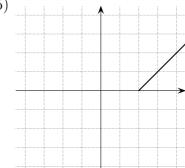


3)

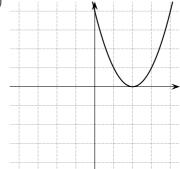




5)



6)



1.4 On considère les fonctions suivantes :

$$f_1(x) = -x^2 + 2$$

$$f_2(x) = \sqrt{x-2}$$

$$f_3(x) = |x - 2|$$

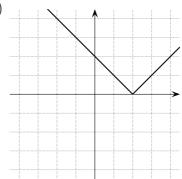
$$f_4 = \frac{1}{(x-2)^2}$$

$$f_5(x) = (x-2)^3$$
 $f_6(x) = 2^{-x}$

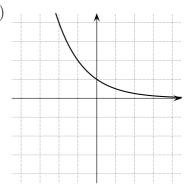
$$f_6(x) = 2^{-x}$$

Déterminer, parmi les graphes ci-dessous, lequel correspond à chacune de ces fonctions.

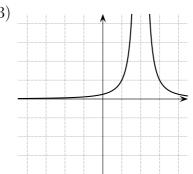
1)



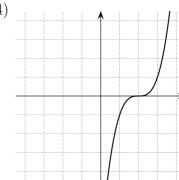
2)

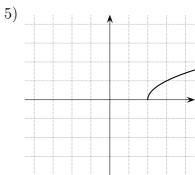


3)

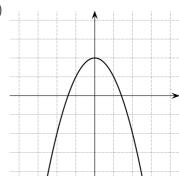


4)

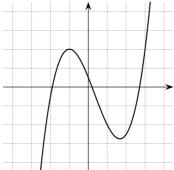




6)



Déduire le graphe de la fonction g de celui de la fonction f. 1.5



- 1) g(x) = f(x) + 1
- 2) g(x) = f(x) 1
- 3) g(x) = f(x+1)

- 4) g(x) = f(x-1)
- $5) \ g(x) = -f(x)$
- 6) g(x) = f(-x)

- 7) g(x) = |f(x)|
- 8) g(x) = |f(x)| + 1
- 9) g(x) = f(|x|)

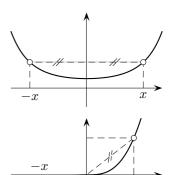
Parité

Une fonction est dite **paire** si f(-x) = f(x) pour tout $x \in D_f$.

La courbe représentant le graphe d'une fonction paire est symétrique par rapport à l'axe des y.

Une fonction est dite **impaire** si f(-x) = -f(x) pour tout $x \in D_f$.

La courbe représentant le graphe d'une fonction impaire est symétrique par rapport à l'origine.



amain au l'angamhla da définition et étudien la popité des fonctions suiventes .

1.6 Déterminer l'ensemble de définition et étudier la parité des fonctions suivantes :

1)
$$f(x) = 5x^4 - 3x^2 + 2$$

2)
$$f(x) = \sqrt{1 - x^2}$$

3)
$$f(x) = x^3 - 2x$$

4)
$$f(x) = \frac{3x^2 - 2}{2x}$$

5)
$$f(x) = \frac{1}{2x^2 + x + 1}$$

6)
$$f(x) = \frac{1}{\sqrt{1-x^2}}$$

7)
$$f(x) = \frac{x^3 - 2x}{x^2 + 1}$$

8)
$$f(x) = \frac{x^2 + 2}{x^2 - 1}$$

9)
$$f(x) = \frac{1}{x+2} - \frac{1}{x-2}$$

10)
$$f(x) = \frac{4x}{x-5}$$

$$11) \ f(x) = \sin(x)$$

$$12) \ f(x) = \cos(x)$$

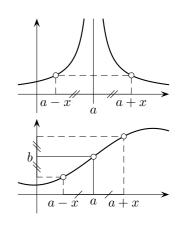
1.7 1) Que peut-on dire des fonctions f + g, f - g, $f \cdot g$ et $\frac{f}{g}$ si f et g sont deux fonctions paires?

- 2) Mêmes questions si f et g sont impaires.
- 3) Mêmes questions si f est paire et g impaire.

Autres symétries

Le graphe d'une fonction f admet un axe de symétrie d'équation x = a si f(a - x) = f(a + x) pour tout x tel que $a + x \in D_f$.

Le graphe d'une fonction f admet le point C(a;b) comme centre de symétrie si f(a-x) + f(a+x) = 2b pour tout x tel que $a+x \in D_f$.



1.8 Montrer que le graphe de la fonction admet la symétrie proposée.

1)
$$f(x) = \frac{1}{2}x^2 - 2x + 3$$
 $x = 2$

2)
$$f(x) = |x+3| + 2$$
 $x = -3$

3)
$$f(x) = x^3 + 3x^2 - x + 1$$
 $C(-1;4)$

4)
$$f(x) = x^4 + 2x^3 - 3x^2 - 4x + 4$$
 $x = -\frac{1}{2}$

5)
$$f(x) = ax^2 + bx + c$$
 $x = -\frac{b}{2a}$

6)
$$f(x) = \frac{2x+1}{x-3}$$
 $C(3;2)$

7)
$$f(x) = x - 4 - \frac{1}{x}$$
 $C(0; -4)$

8)
$$f(x) = \frac{4x^2 + 8x + 3}{x^2 + 2x - 3}$$
 $x = -1$

9)
$$f(x) = 1 - \frac{2x^3}{x^2 + 1}$$
 $C(0;1)$

10)
$$f(x) = \frac{x^2 - x - 1}{x - 2}$$
 $C(2;3)$

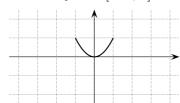
Périodicité

- 1.9 1) Tracer le graphe de la fonction $f(x) = \cos(x)$ sur l'intervalle $[-4\pi; 4\pi]$.
 - 2) Tracer le graphe de la fonction $f(x) = \sin(x)$ sur l'intervalle $[-4\pi; 4\pi]$.
 - 3) Qu'observe-t-on?

Une fonction f de D_f vers \mathbb{R} est **périodique** s'il existe p > 0 tel que, pour tout $x \in D_f$, on ait f(x+p) = f(x).

Le plus petit nombre réel p>0 satisfaisant à cette condition est appelé **période** de f.

1.10 La fonction f est périodique sur \mathbb{R} de période 2. On a représenté ci-dessous f sur [-1;1]. Compléter le tracé de f sur [-4;4].



Composition de fonctions

L'ensemble de définition de $g \circ f$ est l'ensemble de tous les x de l'ensemble de définition de f tels que f(x) est dans l'ensemble de définition de g.

- 1.11 On donne deux fonctions f et g; calculer $g \circ f$ et $f \circ g$.
 - 1) $f(x) = x^2$
- g(x) = 2x + 1
 - 2) $f(x) = x^2 + 1$ $g(x) = \frac{1}{x}$
 - 3) $f(x) = \sqrt{x}$
- g(x) = 2x 6
- 4) La composition des fonctions est-elle commutative?
- 1.12 Montrer que la composition des fonctions est associative : $h \circ (q \circ f) = (h \circ q) \circ f$.
- On donne les fonctions f(x) = 3x, g(x) = x 2 et h(x) = 2x 3. Déterminer 1.13
 - 1) $f \circ q$

- 3) $f \circ f$

- 4) $f \circ q \circ h$
- $2) \ g \circ f$ $5) \ g \circ f \circ h$
- 6) $h \circ q \circ h$

Fonction réciproque

Soit une fonction $f: D \longrightarrow E$. On appelle fonction réciproque de f une fonction, notée f, telle que $(f \circ f)(x) = x$ pour tout $x \in D$ et $(f \circ f)(y) = y$ pour tout $y \in E$.

Deux conditions doivent être remplies pour qu'une telle fonction réciproque existe:

- 1) f doit être surjective : f(D) = E c'est-à-dire que pour tout élément yde E, il existe $x \in D$ tel que f(x) = y;
- 2) f doit être **injective** : $f(x_1) = f(x_2)$ implique $x_1 = x_2$.

On dit d'une fonction à la fois surjective et injective qu'elle est bijective.

1) Pourquoi la fonction $f:\mathbb{R}\longrightarrow\mathbb{R}\;$ n'est-elle pas surjective ? Quel doit être $x\longmapsto x^2$ 1.14

l'ensemble d'arrivée E pour que la fonction $f: \mathbb{R} \longrightarrow E$ soit surjective ? $x \longmapsto x^2$

2) Pourquoi la fonction $f:\mathbb{R}\longrightarrow\mathbb{R}_+$ n'est-elle pas injective ? Quel doit être $x\longmapsto x^2$

l'ensemble de départ D pour que la fonction $f: D \longrightarrow \mathbb{R}_+$ soit injective ? $x \longmapsto x^2$

- 3) Quelle est la fonction réciproque de la fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}_+$? $x \longmapsto x^2$
- 1.15 Déterminer la fonction réciproque des fonctions suivantes en précisant les ensembles de départ et d'arrivée.
 - 1) f(x) = 2x + 3

2) $f(x) = x^2 + 3$

3) $f(x) = \frac{2x+1}{x-1}$

4) $f(x) = \frac{x+1}{x-1}$

1.16 1) (a) Représenter le graphe de la fonction
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 et celui de sa $x \longmapsto 2x+3$

fonction réciproque
$${}^r\!f:\mathbb{R}\longrightarrow\mathbb{R}$$

$$y\longmapsto\frac{y-3}{2}$$

(b) Représenter le graphe de la fonction
$$f: \mathbb{R}_+ \longrightarrow [3; +\infty[$$
 et celui de $x \longmapsto x^2 + 3$ sa fonction réciproque ${}^r\!f: [3; +\infty[\longrightarrow \mathbb{R}_+ \ y \longmapsto \sqrt{y-3}]$.

(c) Représenter le graphe de la fonction
$$f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{2\}$$
 et
$$x \longmapsto \frac{2x+1}{x-1}$$
 celui de sa fonction réciproque ${}^r\!f: \mathbb{R} - \{2\} \longrightarrow \mathbb{R} - \{1\}$.
$$y \longmapsto \frac{y+1}{y-2}$$

- 2) Représenter, sur chacun des graphiques précédents, la bissectrice du premier quadrant. Que constate-t-on?
- 3) Démontrer ce constat.

Réponses

1.1 1)
$$D_f = \mathbb{R}$$

3)
$$D_f = \mathbb{R} - \{-5; -3\}$$

5)
$$D_f = \mathbb{R} - \{-\frac{3}{2}; 0\}$$

7)
$$D_f = [0; +\infty[$$

9)
$$D_f = \mathbb{R}$$

11)
$$D_f = [3; +\infty[$$

13)
$$D_f = \mathbb{R}$$

15)
$$D_f = \mathbb{R} - \{3\}$$

2)
$$D_f = \mathbb{R} - \{-7\}$$

4)
$$D_f = \mathbb{R}$$

6)
$$D_f = \mathbb{R}$$

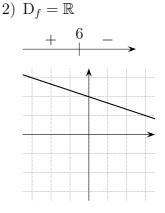
8)
$$D_f =]-\infty; -3] \cup [3; +\infty[$$

10)
$$D_f = [3; 4]$$

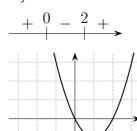
12)
$$D_f =]-\infty;-1] \cup [3;+\infty[$$

14)
$$D_f =]-\infty; -1] \cup [3; +\infty[$$

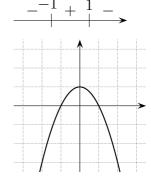
16)
$$D_f =]-\infty; -1[\cup[0;1[$$



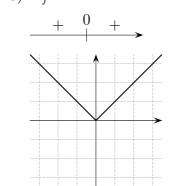
3)
$$D_f = \mathbb{R}$$



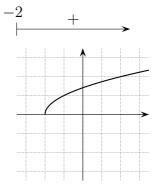
4)
$$D_f = \mathbb{R}$$



5)
$$D_f = \mathbb{R}$$



6)
$$D_f = [-2; +\infty[$$



1.3
$$f_1:1$$

$$f_1:1) f_4:5)$$

$$f_2:6) \\ f_5:4)$$

$$f_5:4)$$

$$f_3:2)$$

$$f_6:3)$$

1.4
$$f_1:6$$

$$f_1:6) f_4:3)$$

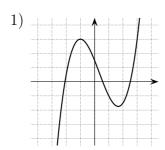
$$f_2:5)$$

$$f_2:5) \\ f_5:4)$$

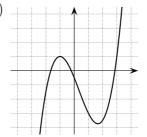
$$f_3:1) f_6:2)$$

$$f_6:2)$$

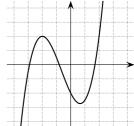
1.5



2)



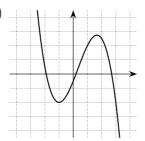
3)



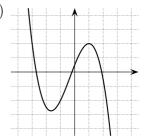
4)

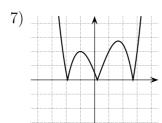


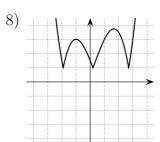
5)

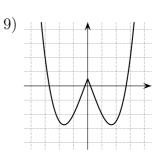


6)









impaire

paire

- 1.6
- 1) $D_f = \mathbb{R}$ paire
- 3) $D_f = \mathbb{R}$ impaire
- 5) $D_f = \mathbb{R}$ quelconque
- 7) $D_f = \mathbb{R}$ impaire
- 9) $D_f = \mathbb{R} \{-2; 2\}$
- 11) $D_f = \mathbb{R}$ impaire
- paire

 $4) D_f = \mathbb{R} - \{0\}$

6) $D_f =]-1;1[$

8) $D_f = \mathbb{R} - \{-1; 1\}$

2) $D_f = [-1; 1]$ paire

10) $D_f = \mathbb{R} - \{5\}$ quelconque

paire

12) $D_f = \mathbb{R}$ paire

1.7

$$f + g$$

f - g

paire

- 1) paire
- paire

impaire

paire

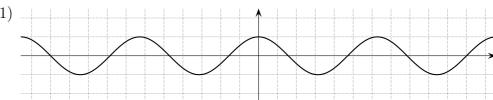
- paire paire
- impaire quelconque
 - quelconque

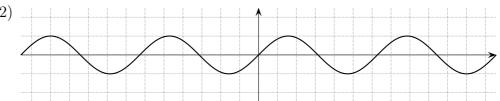
impaire

impaire

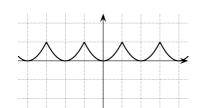
1.9

2)





- 3) Les fonctions $\cos(x)$ et $\sin(x)$ sont périodiques de période 2π .
- 1.10



- 1.11

- 1) $(g \circ f)(x) = 2x^2 + 1$ $(f \circ g)(x) = 4x^2 + 4x + 1$ 2) $(g \circ f)(x) = \frac{1}{x^2 + 1}$ $(f \circ g)(x) = \frac{x^2 + 1}{x^2}$

3)
$$(g \circ f)(x) = 2\sqrt{x} - 6$$
 $(f \circ g)(x) = \sqrt{2x - 6}$

4) La composition des fonctions n'est pas commutative : $g \circ f \neq f \circ g$.

1.13 1)
$$(f \circ g)(x) = 3x - 6$$

2)
$$(g \circ f)(x) = 3x - 2$$

3)
$$(f \circ f)(x) = 9x$$

4)
$$(f \circ g \circ h)(x) = 6x - 15$$

5)
$$(g \circ f \circ h)(x) = 6x - 11$$

6)
$$(h \circ g \circ h)(x) = 4x - 13$$

1.14 1)
$$E = \mathbb{R}_+$$

2)
$$D = \mathbb{R}_+$$
 ou $D = \mathbb{R}_-$ 3) $^r f : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$
 $y \longmapsto \sqrt{y}$

1.15 1)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto 2x + 3$

$${}^r f: \mathbb{R} \longrightarrow \mathbb{R}$$
 $y \longmapsto \frac{y-3}{2}$

2)
$$f: \mathbb{R}_{+} \longrightarrow [3; +\infty[$$

 $x \longmapsto x^{2} + 3$
 $f: \mathbb{R}_{-} \longrightarrow [3; +\infty[$
 $x \longmapsto x^{2} + 3$

$${}^r f: [3; +\infty[\longrightarrow \mathbb{R}_- \ y \longmapsto -\sqrt{y-3}]$$

$$x \longmapsto \frac{2x+1}{x-1}$$

$${}^{r}f: \mathbb{R} - \{2\} \longrightarrow \mathbb{R} - \{1\}$$

$$y \longmapsto \frac{y+1}{y-2}$$

4)
$$f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{1\}$$

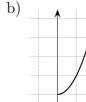
$$x \longmapsto \frac{x+1}{x-1}$$

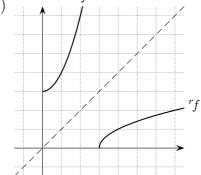
$$rf: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{1\}$$

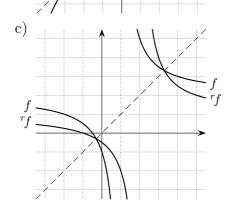
$$y \longmapsto \frac{y+1}{y-1}$$

$$^{r}f: \mathbb{R} - \{1\} \longrightarrow \mathbb{R} - \{1\}$$

$$y \longmapsto \frac{y+1}{y-1}$$







2) Les graphes des fonctions f et f sont symétriques par rapport à la bissectrice du premier quadrant.