3.21 1)
$$\begin{cases} u_1 = \sqrt{1} \\ u_{n+1} = \sqrt{1 + u_n}, n \ge 1 \end{cases}$$

2) (a) Montrons par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante.

Initialisation:
$$u_1 = \sqrt{1} = 1 < u_2 = \sqrt{1 + \sqrt{1}} = \sqrt{1 + 1} = \sqrt{2}$$

Hérédité : Supposons $u_n < u_{n+1}$ pour un certain $n \in \mathbb{N}$.

Alors $1+u_n<1+u_{n+1},$ d'où suit $\sqrt{1+u_n}<\sqrt{1+u_{n+1}},$ à savoir $u_{n+1}< u_{n+2}.$

(b) Montrons par récurrence que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 2.

L'initialisation est triviale : $u_1 = \sqrt{1} = 1 < 2$.

Supposons $u_n < 2$ pour un certain $n \in \mathbb{N}$.

Alors $1 + u_n < 1 + 2 = 3$, d'où l'on tire $\sqrt{1 + u_n} < \sqrt{3} < \sqrt{4} = 2$.

On a ainsi prouvé l'hérédité : $u_{n+1} < 2$.

Attendu que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et majorée, elle converge.

3) La limite a de la suite $(u_n)_{n\in\mathbb{N}}$ doit vérifier l'équation

$$\sqrt{1+a} = a$$

$$1 + a = a^2$$

$$0 = a^2 - a - 1$$

$$\Delta = (-1)^2 - 4 \cdot 1 \cdot (-1) = 5$$

$$a_1 = \frac{-(-1) + \sqrt{5}}{2 \cdot 1} = \frac{1 + \sqrt{5}}{2} > 1$$
 et $a_2 = \frac{-(-1) - \sqrt{5}}{2 \cdot 1} = \frac{1 - \sqrt{5}}{2} < 1$

Étant donné que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante et que $u_1=\sqrt{1}=1$, la seule limite possible est $a_1=\frac{1+\sqrt{5}}{2}$.