3.4 Soit $\varepsilon > 0$ un nombre positif quelconque (arbitrairement petit).

Il faut montrer qu'il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \geqslant n_0$ on ait $|u_n - 0| < \varepsilon$.

$$|u_n - 0| = \left| \frac{1}{\sqrt{n}} \right| = \frac{1}{\sqrt{n}}$$

On cherche ainsi à vérifier les inégalités suivantes :

$$\frac{1}{\sqrt{n}} < \varepsilon$$

$$\sqrt{n} > \frac{1}{\varepsilon}$$

$$n > \frac{1}{\varepsilon^2}$$

En choisissant $n_0 \in \mathbb{N}$ avec $n_0 > \frac{1}{\varepsilon^2}$, il résulte que pour tout $n \geqslant n_0$, on a bien

$$|u_n - 0| = \frac{1}{\sqrt{n}} < \varepsilon.$$