- **4.19** 1) da'b' = (da')b' = ab' est un multiple de a da'b' = a'(db') = a'b est un multiple de b
 - 2) (a) L'égalité $\alpha d a' = \beta d b'$ implique $\alpha a' = \beta b'$, d'où suit que $a' \mid \beta b'$. Vu l'exercice 3.12, $a' = \frac{a}{d}$ et $b' = \frac{b}{d}$ sont premiers entre eux. Le lemme de Gauss entraı̂ne que a' divise β .
 - (b) Il existe donc $k \in \mathbb{Z}$ tel que $a'k = \beta$. Ainsi $m = \beta db' = (a'k) db' = k (da'b')$.
 - 3) Puisque $d\,a'\,b'$ divise tout multiple commun à a et à b, il en résulte que $\operatorname{ppcm}(a,b)=d\,a'\,b'$.
 - 4) $ppcm(a, b) \cdot pgcd(a, b) = (d a' b') \cdot d = (d a') (d b') = a b$