2.2 Dire que l'on tire successivement les jetons signifie que l'on tient compte de l'ordre dans lequel ils sont tirés : on a donc affaire à un arrangement simple, puisque le tirage est sans remise.

Le nombre de cas possibles vaut donc $A_3^{26} = \frac{26!}{(26-3)!} = 15$ 600.

1) Comme il y a 20 consonnes dans l'alphabet, le nombre de cas favorables vaut $A_3^{20}=\frac{20!}{(20-3)!}=6840.$

Probabilité recherchée : $\frac{A_3^{20}}{A_3^{26}} = \frac{6840}{15~600} = \frac{57}{130} \approx 43,85~\%$

2) Vu qu'il y a 6 consonnes dans l'alphabet, le nombre de cas favorables vaut $A_3^6 = \frac{6!}{(6-3)!} = 120$.

Probabilité recherchée : $\frac{A_3^6}{A_3^{26}}=\frac{120}{15~600}=\frac{1}{130}\approx 0{,}77~\%$

3) Il n'y a qu'une seule façon d'obtenir le mot ${\tt BAC}$: tirer dans l'ordre le ${\tt B},$ le ${\tt A}$ et enfin le ${\tt C}.$

Probabilité recherchée : $\frac{1}{15~600}\approx 0{,}064~\%$

4) Il existe $P_3 = 3! = 6$ anagrammes du mot BAC.

Probabilité recherchée : $\frac{6}{15~600} = \frac{1}{2600} \approx 0.038~\%$