4.17 1) Vu que $pgcd(6,15) = 3 \neq 1$, les entiers $m_1 = 6$ et $m_2 = 15$ ne sont pas premiers entre eux.

Étant donné que le théorème chinois des restes requiert que les entiers m_1, m_2, \ldots, m_n soient deux à deux premiers entre eux, il ne s'applique pas, car cette hypothèse n'est pas vérifiée.

2) (a) i. Supposons $x \equiv 1 \mod 6$.

Comme 2 divise 6, l'exercice 4.3 implique $x \equiv 1 \mod 2$.

De même, $x \equiv 1 \mod 3$, vu que 3 divise 6.

On a donc montré $x \equiv 1 \mod 6 \implies \begin{cases} x \equiv 1 \mod 2 \\ x \equiv 1 \mod 3 \end{cases}$

ii. Supposons que $x \equiv 1 \mod 2$ et $x \equiv 1 \mod 3$.

Comme 2 et 3 sont premiers entre eux, l'exercice 4.4 permet d'affirmer que $x \equiv 1 \mod 2 \cdot 3$, c'est-à-dire $x \equiv 1 \mod 6$.

On a ainsi prouvé $\begin{cases} x \equiv 1 \mod 2 \\ x \equiv 1 \mod 3 \end{cases} \implies x \equiv 1 \mod 6$

(b) i. Supposons $x \equiv 4 \mod 15$.

Comme 3 divise 15, l'exercice 4.3 implique $x \equiv 4 \mod 3$ ou encore $x \equiv 1 \mod 3$, vu que $4 \equiv 1 \mod 3$.

Un raisonnement similaire conduit à $x \equiv 4 \mod 5$, puisque 5 divise 15.

Nous avons donc montré $x \equiv 4 \mod 15 \implies \begin{cases} x \equiv 1 \mod 3 \\ x \equiv 4 \mod 5 \end{cases}$

ii. Supposons que $x \equiv 1 \mod 3$ et que $x \equiv 4 \mod 5$.

 $x \equiv 1 \mod 3$ donne $x \equiv 4 \mod 3$, car $1 \equiv 4 \mod 3$.

L'exercice 4.4 implique $x \equiv 4 \mod 3 \cdot 5$, à savoir $x \equiv 4 \mod 15$, attendu que les entiers 3 et 5 sont premiers entre eux.

On a donc prouvé $\begin{cases} x \equiv 1 \mod 3 \\ x \equiv 4 \mod 5 \end{cases} \implies x \equiv 4 \mod 15$

3) Les équivalences établies ci-dessus impliquent :

$$\begin{cases} x \equiv 1 \mod 6 \\ x \equiv 4 \mod 15 \end{cases} \iff \begin{cases} x \equiv 1 \mod 2 \\ x \equiv 1 \mod 3 \\ x \equiv 1 \mod 3 \\ x \equiv 4 \mod 5 \end{cases} \iff \begin{cases} x \equiv 1 \mod 2 \\ x \equiv 1 \mod 3 \\ x \equiv 4 \mod 5 \end{cases}$$

Puisque les entiers 2, 3 et 5 sont deux à deux premiers entre eux, on peut appliquer le théorème chinois des restes pour résoudre ce dernier système de congruences.

$$M = 2 \cdot 3 \cdot 5 = 30$$

$$M_1 = \frac{30}{2} = 15$$

$$M_2 = \frac{30}{3} = 10$$

$$M_3 = \frac{30}{5} = 6$$

```
\begin{array}{lll} 15\,x_1\equiv 1\mod 2\\ x_1\equiv 1\mod 2 & \operatorname{car}\ 15\equiv 14+1\equiv 2\cdot 7+1\equiv 1\mod 2\\ 10\,x_2\equiv 1\mod 3\\ x_2\equiv 1\mod 3 & \operatorname{car}\ 10\equiv 9+1\equiv 3\cdot 3+1\equiv 1\mod 3\\ 6\,x_3\equiv 1\mod 5\\ x_3\equiv 1\mod 5 & \operatorname{car}\ 6\equiv 5+1\equiv 1\mod 5\\ \text{La solution générale du système de congruences est par conséquent}:\\ x\equiv 1\cdot 15\cdot 1+1\cdot 10\cdot 1+4\cdot 6\cdot 1\\ \equiv 49\\ \equiv 19\mod 30 \end{array}
```